Efficient catenane synthesis by cucurbit[6]uril-mediated azide–alkyne cycloaddition

We report here the efficient synthesis of a series of [3]catenanes featuring the use of cucurbit[6]uril to simultaneously mediate the mechanical and covalent bond formations. By coupling the mechanical interlocking with covalent macrocyclization, formation of topological isomers is eliminated and the [3]catenanes are formed exclusively in good yields. The efficient access to these [3]catenanes and the presence of other recognition units render them promising building blocks for the construction of other high-order interlocked structures.

[1]  C. Yee,et al.  Strategies To Assemble Catenanes with Multiple Interlocked Macrocycles. , 2017, Inorganic chemistry.

[2]  Stuart J. Rowan,et al.  Poly[n]catenanes: Synthesis of molecular interlocked chains , 2017, Science.

[3]  Kai Wang,et al.  Facile syntheses of [3]-, [4]- and [6]catenanes templated by orthogonal supramolecular interactions† †Electronic supplementary information (ESI) available: Synthetic procedures, NMR, MS, HPLC and UV-Vis data. See DOI: 10.1039/c5sc04774a , 2016, Chemical science.

[4]  W. Katagiri,et al.  Synthesis of linear [5]catenanes via olefin metathesis dimerization of pseudorotaxanes composed of a [2]catenane and a secondary ammonium salt. , 2016, Chemical communications.

[5]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[6]  David A Leigh,et al.  Catenanes: Fifty Years of Molecular Links , 2015, Angewandte Chemie.

[7]  P. Beer,et al.  Progress in the synthesis and exploitation of catenanes since the Millennium. , 2014, Chemical Society reviews.

[8]  Timothy R. Cook,et al.  Self-assembly of triangular and hexagonal molecular necklaces. , 2014, Journal of the American Chemical Society.

[9]  Samuel P. Black,et al.  Generation of a Dynamic System of Three‐Dimensional Tetrahedral Polycatenanes , 2013, Angewandte Chemie.

[10]  Hao Li,et al.  Quantitative emergence of hetero[4]rotaxanes by template-directed click chemistry. , 2013, Angewandte Chemie.

[11]  E. Keinan,et al.  Bistable cucurbituril rotaxanes without stoppers. , 2012, Chemistry.

[12]  C. Campbell,et al.  Strategies and tactics for the metal-directed synthesis of rotaxanes, knots, catenanes, and higher order links. , 2011, Angewandte Chemie.

[13]  H. Anderson,et al.  Template-directed synthesis of π-conjugated porphyrin [2]rotaxanes and a [4]catenane based on a six-porphyrin nanoring , 2011 .

[14]  J Fraser Stoddart,et al.  Chemical topology: complex molecular knots, links, and entanglements. , 2011, Chemical reviews.

[15]  J. F. Stoddart,et al.  Mechanically bonded macromolecules. , 2010, Chemical Society reviews.

[16]  O. Scherman,et al.  Sequence-specific self-sorting of the binding sites of a ditopic guest by cucurbituril homologues and subsequent formation of a hetero[4]pseudorotaxane. , 2009, Chemistry.

[17]  David A Leigh,et al.  Active metal template synthesis of rotaxanes, catenanes and molecular shuttles. , 2009, Chemical Society reviews.

[18]  B. Salih,et al.  Molecular switch based on a cucurbit[6]uril containing bistable [3]rotaxane. , 2007, Chemical communications.

[19]  J. Sanders,et al.  From Kinetic to ThermodynamicAssembly of Catenanes: Error Checking, Supramolecular Protectionand Oligocatenanes , 2002 .

[20]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[21]  J. Fraser Stoddart,et al.  Cyclodextrin-Based Catenanes and Rotaxanes. , 1998, Chemical reviews.

[22]  David J. Williams,et al.  The Five‐Stage Self‐Assembly of a Branched Heptacatenane , 1997 .

[23]  C. Dietrich-Buchecker,et al.  Multiring interlocked systems: structure elucidation by electrospray mass spectrometry , 1991 .

[24]  Jean-Pierre Sauvage,et al.  Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands , 1987 .