MicroRNAs: Target Recognition and Regulatory Functions

[1]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[2]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[3]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[4]  Dang D. Long,et al.  mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein–enriched transcripts , 2008, Nature Methods.

[5]  Oliver Hobert,et al.  Molecular architecture of a miRNA-regulated 3' UTR. , 2008, RNA.

[6]  P. Sharp,et al.  Proliferating Cells Express mRNAs with Shortened 3' Untranslated Regions and Fewer MicroRNA Target Sites , 2008, Science.

[7]  Shobha Vasudevan,et al.  Cell cycle control of microRNA-mediated translation regulation , 2008, Cell cycle.

[8]  Michel C Nussenzweig,et al.  MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. , 2008, Immunity.

[9]  Thomas Tuschl,et al.  MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. , 2008, Immunity.

[10]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[11]  Doron Betel,et al.  The microRNA.org resource: targets and expression , 2007, Nucleic Acids Res..

[12]  David Haussler,et al.  The UCSC Genome Browser Database: 2008 update , 2007, Nucleic Acids Res..

[13]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[14]  Reuven Agami,et al.  RNA-Binding Protein Dnd1 Inhibits MicroRNA Access to Target mRNA , 2007, Cell.

[15]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[16]  Zhenyu Xuan,et al.  A biochemical approach to identifying microRNA targets , 2007, Proceedings of the National Academy of Sciences.

[17]  Manolis Kellis,et al.  Reliable prediction of regulator targets using 12 Drosophila genomes. , 2007, Genome research.

[18]  Colin N. Dewey,et al.  Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures , 2007, Nature.

[19]  Manolis Kellis,et al.  Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. , 2007, Genome research.

[20]  G. Hannon,et al.  The Piwi-piRNA Pathway Provides an Adaptive Defense in the Transposon Arms Race , 2007, Science.

[21]  J. Kitzman,et al.  Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. , 2007, RNA.

[22]  H. Horvitz,et al.  Most Caenorhabditis elegans microRNAs Are Individually Not Essential for Development or Viability , 2007, PLoS genetics.

[23]  A. Schier,et al.  Target Protectors Reveal Dampening and Balancing of Nodal Agonist and Antagonist by miR-430 , 2007, Science.

[24]  Jessica Treisman,et al.  The Conserved microRNA MiR-8 Tunes Atrophin Levels to Prevent Neurodegeneration in Drosophila , 2007, Cell.

[25]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[26]  George Easow,et al.  Isolation of microRNA targets by miRNP immunopurification. , 2007, RNA.

[27]  Stefan L Ameres,et al.  Molecular Basis for Target RNA Recognition and Cleavage by Human RISC , 2007, Cell.

[28]  Mihaela Zavolan,et al.  Reproductive toxicology. Trichloroethylene. , 1997, BMC Bioinformatics.

[29]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[30]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[31]  Uwe Ohler,et al.  Spatial preferences of microRNA targets in 3' untranslated regions , 2007, BMC Genomics.

[32]  J. Steitz,et al.  Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR , 2007, Proceedings of the National Academy of Sciences.

[33]  Anton J. Enright,et al.  Requirement of bic/microRNA-155 for Normal Immune Function , 2007, Science.

[34]  G. Meister,et al.  Identification of Human microRNA Targets From Isolated Argonaute Protein Complexes , 2007, RNA biology.

[35]  Dang D. Long,et al.  Potent effect of target structure on microRNA function , 2007, Nature Structural &Molecular Biology.

[36]  Ola Snøve,et al.  Distance constraints between microRNA target sites dictate efficacy and cooperativity , 2007, Nucleic acids research.

[37]  David P. Bartel,et al.  Supporting Online Material Materials and Methods Fig. S1 Tables S1 and S2 References Database S1 Disrupting the Pairing between Let-7 and Hmga2 Enhances Oncogenic Transformation , 2022 .

[38]  Mihaela Zavolan,et al.  Inference of miRNA targets using evolutionary conservation and pathway analysis , 2007, BMC Bioinformatics.

[39]  Christopher M. Player,et al.  Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous siRNAs in C. elegans , 2006, Cell.

[40]  Alexander F. Schier,et al.  Differential Regulation of Germline mRNAs in Soma and Germ Cells by Zebrafish miR-430 , 2006, Current Biology.

[41]  Yan Li,et al.  MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. , 2006, Genes & development.

[42]  Julius Brennecke,et al.  Denoising feedback loops by thresholding--a new role for microRNAs. , 2006, Genes & development.

[43]  Yvonne Tay,et al.  A Pattern-Based Method for the Identification of MicroRNA Binding Sites and Their Corresponding Heteroduplexes , 2006, Cell.

[44]  W. Filipowicz,et al.  Relief of microRNA-Mediated Translational Repression in Human Cells Subjected to Stress , 2006, Cell.

[45]  Florian Caiment,et al.  A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep , 2006, Nature Genetics.

[46]  D. Bartel,et al.  MicroRNAS and their regulatory roles in plants. , 2006, Annual review of plant biology.

[47]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[48]  Colin N. Dewey,et al.  A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans , 2006, Current Biology.

[49]  N. Rajewsky,et al.  Cell-type-specific signatures of microRNAs on target mRNA expression. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Xin Li,et al.  A microRNA Mediates EGF Receptor Signaling and Promotes Photoreceptor Differentiation in the Drosophila Eye , 2005, Cell.

[51]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[52]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[53]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[54]  A. Yoo,et al.  LIN-12/Notch Activation Leads to MicroRNA-Mediated Down-Regulation of Vav in C. elegans , 2005, Science.

[55]  Ligang Wu,et al.  Micro-RNA Regulation of the Mammalian lin-28 Gene during Neuronal Differentiation of Embryonal Carcinoma Cells , 2005, Molecular and Cellular Biology.

[56]  Murat Gunel,et al.  Sequence Variants in SLITRK1 Are Associated with Tourette's Syndrome , 2005, Science.

[57]  H. Horvitz,et al.  The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. , 2005, Developmental cell.

[58]  Oliver Hobert,et al.  MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[60]  Yong Zhao,et al.  Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis , 2005, Nature.

[61]  H. Horvitz,et al.  MicroRNA Expression in Zebrafish Embryonic Development , 2005, Science.

[62]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[63]  Kristin C. Gunsalus,et al.  microRNA Target Predictions across Seven Drosophila Species and Comparison to Mammalian Targets , 2005, PLoS Comput. Biol..

[64]  Gerald M Rubin,et al.  Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. , 2005, Genes & development.

[65]  Florian Caiment,et al.  RNAi-Mediated Allelic trans-Interaction at the Imprinted Rtl1/Peg11 Locus , 2005, Current Biology.

[66]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[67]  Thomas Tuschl,et al.  Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein , 2005, Nature.

[68]  D. Barford,et al.  Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex , 2005, Nature.

[69]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[70]  Y. Li,et al.  Incorporating structure to predict microRNA targets. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[71]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[72]  R. Russell,et al.  Principles of MicroRNA–Target Recognition , 2005, PLoS biology.

[73]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[74]  N. Rajewsky,et al.  A pancreatic islet-specific microRNA regulates insulin secretion , 2004, Nature.

[75]  Anton J. Enright,et al.  Human MicroRNA Targets , 2004, PLoS biology.

[76]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[77]  Guiliang Tang,et al.  MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region , 2004 .

[78]  William McGinnis,et al.  Multiplex Detection of RNA Expression in Drosophila Embryos , 2004, Science.

[79]  P. Zamore,et al.  Kinetic analysis of the RNAi enzyme complex , 2004, Nature Structural &Molecular Biology.

[80]  A. Hatzigeorgiou,et al.  A combined computational-experimental approach predicts human microRNA targets. , 2004, Genes & development.

[81]  D. Bartel,et al.  Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs , 2004, Nature Reviews Genetics.

[82]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[83]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[84]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[85]  Eun-Young Choi,et al.  The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3'UTR. , 2004, Genes & development.

[86]  R. Plasterk,et al.  Substrate requirements for let-7 function in the developing zebrafish embryo. , 2004, Nucleic acids research.

[87]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[88]  Oliver Hobert,et al.  A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans , 2003, Nature.

[89]  Anton J. Enright,et al.  MicroRNA targets in Drosophila , 2003, Genome Biology.

[90]  Julius Brennecke,et al.  Identification of Drosophila MicroRNA Targets , 2003, PLoS biology.

[91]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[92]  V. Ambros,et al.  MicroRNAs and Other Tiny Endogenous RNAs in C. elegans , 2003, Current Biology.

[93]  A. Rougvie,et al.  The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. , 2003, Developmental cell.

[94]  C. Burge,et al.  The microRNAs of Caenorhabditis elegans. , 2003, Genes & development.

[95]  Phillip A Sharp,et al.  siRNAs can function as miRNAs , 2003 .

[96]  B. Reinhart,et al.  Small RNAs Correspond to Centromere Heterochromatic Repeats , 2002, Science.

[97]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[98]  G. Hutvagner,et al.  A microRNA in a Multiple-Turnover RNAi Enzyme Complex , 2002, Science.

[99]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[100]  M. Mann,et al.  miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. , 2002, Genes & development.

[101]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[102]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[103]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[104]  A. Pasquinelli,et al.  Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing , 2001, Cell.

[105]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[106]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[107]  C Burks,et al.  The K box, a conserved 3' UTR sequence motif, negatively regulates accumulation of enhancer of split complex transcripts. , 1998, Development.

[108]  E. Lai,et al.  The Bearded box, a novel 3' UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split Complex gene expression. , 1997, Development.

[109]  V. Ambros,et al.  The Cold Shock Domain Protein LIN-28 Controls Developmental Timing in C. elegans and Is Regulated by the lin-4 RNA , 1997, Cell.

[110]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[111]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[112]  G. Ruvkun,et al.  Negative regulatory sequences in the lin-14 3'-untranslated region are necessary to generate a temporal switch during Caenorhabditis elegans development. , 1991, Genes & development.

[113]  C. Coulson,et al.  Molecular Architecture , 1953, Nature.