Region-Based Shape Matching for Automatic Image Annotation and Query-by-Example

We present a method for automatic image annotation and retrieval based on query-by-example by region-based shape matching. The proposed method consists of two parts: region selection and shape matching. In the first part, the image is partitioned into disjoint, connected regions with more-or-less uniform color, whose boundaries coincide with spatial edge locations. Each region or valid combinations of neighboring regions constitute “potential objects.” In the second part, the shape of each potential object is tested to determine whether it matches one from a set of given templates. To this effect, we propose a new shape matching method, which is translation-, rotation-, and isotropic scale-invariant, where the boundary of each potential object, as well as of each template, is represented by a B-spline. We, then, identify correspondences between the joint points of the B-splines of potential objects and templates by using a modal matching method. These correspondences are used to estimate the parameters of an affine mapping to register the object with the template. A proximity measure is then computed between the two contours based on the Hausdorff distance. We demonstrate the performance of the proposed method on a variety of images.

[1]  William I. Grosky,et al.  Towards a data model for integrated pictorial databases , 1983, Comput. Vis. Graph. Image Process..

[2]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[3]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[4]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[5]  G. Wyszecki,et al.  Color Science Concepts and Methods , 1982 .

[6]  Euripides G. M. Petrakis,et al.  Similarity Searching in Medical Image Databases , 1997, IEEE Trans. Knowl. Data Eng..

[7]  Gérard G. Medioni,et al.  Structural Indexing: Efficient 3-D Object Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Toshikazu Kato,et al.  Intelligent visual interaction with image database systems-toward the multimedia personal interface , 1991 .

[9]  Zhengwei Yang,et al.  Invariant matching and identification of curves using B-splines curve representation , 1995, IEEE Trans. Image Process..

[10]  Nuggehally Sampath Jayant,et al.  An adaptive clustering algorithm for image segmentation , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[11]  Jake K. Aggarwal,et al.  The Integration of Image Segmentation Maps using Region and Edge Information , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[13]  Shi-Kuo Chang Pictorial Information Systems , 1981, Computer.

[14]  Wen-Hsiang Tsai,et al.  Scale- and orientation-invariant generalized hough transform3-a new approach , 1991, Pattern Recognit..

[15]  Aldo Cumani,et al.  Edge detection in multispectral images , 1991, CVGIP Graph. Model. Image Process..

[16]  John F. Haddon,et al.  Image Segmentation by Unifying Region and Boundary Information , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  W. Eric L. Grimson On the Recognition of Curved Objects , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Alex Pentland,et al.  Modal Matching for Correspondence and Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Dieter Jungnickel,et al.  Graphs, Networks, and Algorithms , 1980 .

[21]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Alex Pentland,et al.  Photobook: tools for content-based manipulation of image databases , 1994, Other Conferences.

[23]  Yee-Hong Yang,et al.  Multiresolution Color Image Segmentation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  William I. Grosky,et al.  Image Database Management , 1992, Adv. Comput..

[25]  A. Murat Tekalp,et al.  Adaptive Bayesian segmentation of color images , 1994, J. Electronic Imaging.

[26]  Alex Pentland,et al.  Photobook: tools for content-based manipulation of image databases , 1994, Electronic Imaging.

[27]  Michael Brady,et al.  Feature-based correspondence: an eigenvector approach , 1992, Image Vis. Comput..

[28]  Majid Ahmadi,et al.  Pattern recognition with moment invariants: A comparative study and new results , 1991, Pattern Recognit..

[29]  Alfonso F. Cardenas,et al.  Specification of spatial integrity constraints in pictorial databases , 1989, Computer.

[30]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[31]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Hong Yan,et al.  Segmentation of color images using spatial and color space information , 1992, J. Electronic Imaging.

[33]  Shih-Fu Chang,et al.  Extracting multidimensional signal features for content-based visual query , 1995, Other Conferences.

[34]  Euripides G. M. Petrakis,et al.  Similarity searching in large image database , 1994 .

[35]  A. Murat Tekalp,et al.  Fusion of color and edge information for improved segmentation and edge linking , 1997, Image Vis. Comput..

[36]  S. Marshall,et al.  Review of shape coding techniques , 1989, Image Vis. Comput..

[37]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[38]  Robert Sedgewick,et al.  Algorithms in C , 1990 .

[39]  Praveen Kumar,et al.  Fourier domain shape analysis methods: A brief review and an illustrative application to rainfall area evolution , 1990 .

[40]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[41]  Roland T. Chin,et al.  On image analysis by the methods of moments , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[42]  Hsien-Che Lee,et al.  Detecting boundaries in a vector field , 1991, IEEE Trans. Signal Process..

[43]  Ehud Rivlin,et al.  Local Invariants For Recognition , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[45]  Roland T. Chin,et al.  On Image Analysis by the Methods of Moments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  W. A. Wright A Markov random field approach to data fusion and colour segmentation , 1989, Image Vis. Comput..

[47]  Theodosios Pavlidis,et al.  Integrating region growing and edge detection , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[48]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[49]  King-Sun Fu,et al.  Picture Query Languages for Pictorial Data-Base Systems , 1981, Computer.

[50]  Thrasyvoulos N. Pappas,et al.  An Adaptive Clustering Algorithm For Image Segmentation , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[51]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Ramesh C. Jain,et al.  A Visual Information Management System for the Interactive Retrieval of Faces , 1993, IEEE Trans. Knowl. Data Eng..

[53]  J. Cohen,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulas , 1968 .