Combinatorial Influence of Bimodal Size of B2 TiCu Compounds on Plasticity of Ti-Cu-Ni-Zr-Sn-Si Bulk Metallic Glass Composites

[1]  G. Wang,et al.  Deformation-Induced Martensitic Transformation in Cu-Zr-Zn Bulk Metallic Glass Composites , 2015 .

[2]  J. Eckert,et al.  The influence of in situ formed precipitates on the plasticity of Fe-Nb-B-Cu bulk metallic glasses , 2011 .

[3]  E-Wen Huang,et al.  Tensile deformation micromechanisms for bulk metallic glass matrix composites: From work-hardening to softening , 2011 .

[4]  J. Eckert,et al.  Ductile Ti-Based Bulk Metallic Glasses with High Specific Strength , 2011 .

[5]  Yuan Wu,et al.  Bulk Metallic Glass Composites with Transformation‐Mediated Work‐Hardening and Ductility , 2010, Advanced materials.

[6]  G. Wang,et al.  Transformation-mediated ductility in CuZr-based bulk metallic glasses. , 2010, Nature materials.

[7]  Haifeng Zhang,et al.  In situ spherical B2 CuZr phase reinforced ZrCuNiAlNb bulk metallic glass matrix composite , 2010 .

[8]  Wei Zhang,et al.  Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity , 2010 .

[9]  J. Eckert,et al.  Designing bulk metallic glass and glass matrix composites in martensitic alloys , 2009 .

[10]  Douglas C. Hofmann,et al.  Designing metallic glass matrix composites with high toughness and tensile ductility , 2008, Nature.

[11]  X. F. Zhang,et al.  Effect of local chemistry, structure and length scale of heterogeneities on the mechanical properties of a Ti45Cu40Ni7.5Zr5Sn2.5 bulk metallic glass , 2008 .

[12]  J. Bae,et al.  Plasticity in Bulk Metallic Glass Composites Containing Dual Amorphous Phases , 2007 .

[13]  J. Eckert,et al.  Work hardening ability of ductile Ti45Cu40Ni7.5Zr5Sn2.5 and Cu47.5Zr47.5Al5 bulk metallic glasses , 2006 .

[14]  K. B. Kim,et al.  Effect of Sn on microstructure and mechanical properties of (Ti–Cu)-based bulk metallic glasses , 2006 .

[15]  W. Johnson,et al.  A universal criterion for plastic yielding of metallic glasses with a (T/Tg) 2/3 temperature dependence. , 2005, Physical review letters.

[16]  A. Inoue,et al.  Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr-Al-Ni-Pd bulk metallic glass , 2005 .

[17]  T. Ohkubo,et al.  Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass , 2005 .

[18]  J. Eckert,et al.  "Work-Hardenable" ductile bulk metallic glass. , 2005, Physical review letters.

[19]  A. Yavari,et al.  Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass , 2005 .

[20]  Haifeng Zhang,et al.  Formation of High Strength In-situ Bulk Metallic Glass Composite with Enhanced Plasticity in Cu50Zr47.5Ti2.5 Alloy , 2005 .

[21]  Yaohe Zhou,et al.  Mechanically driven phase separation and corresponding microhardness change in Cu60Zr20Ti20 bulk metallic glass , 2005 .

[22]  Weihua Wang,et al.  Intrinsic plasticity or brittleness of metallic glasses , 2005 .

[23]  Yu‐Chan Kim,et al.  Role of nanometer-scale quasicrystals in improving the mechanical behavior of Ti-based bulk metallic glasses , 2003 .

[24]  K. T. Ramesh,et al.  Enhanced plastic strain in Zr-based bulk amorphous alloys , 2001 .

[25]  W. Johnson Bulk Glass-Forming Metallic Alloys: Science and Technology , 1999 .

[26]  Frans Spaepen,et al.  A microscopic mechanism for steady state inhomogeneous flow in metallic glasses , 1977 .

[27]  A. Götte,et al.  Metall , 1897 .

[28]  W. Marsden I and J , 2012 .