Plastic deformation of directionally solidified ingots of binary and some ternary MoSi2/Mo5Si3 eutectic composites

Abstract The high-temperature mechanical properties of directionally solidified (DS) ingots of binary and some ternary MoSi2/Mo5Si3 eutectic composites with a script lamellar structure have been investigated as a function of loading axis orientation and growth rate in a temperature range from 900 to 1500°C. These DS ingots are plastically deformed above 1000 and 1100 °C when the compression axis orientations are parallel to [1 0]MoSi2 (nearly parallel to the growth direction) and [001]MoSi2, respectively. [1 0]MoSi2-oriented DS eutectic composites are strengthened so much by forming a script lamellar microstructure and they exhibit yield stress values several times higher than those of MoSi2 single crystals of the corresponding orientation. The yield stress values increase with the decrease in the average thickness of MoSi2 phase in the script lamellar structure, indicating that microstructure refinement is effective in obtaining better high-temperature strength of these DS eutectic composites. Among the four ternary alloying elements tested (V, Nb, Ta and W), Ta is found to be the most effective in obtaining higher yield strength at 1400 °C.

[1]  Hirotaka Matsunoshita,et al.  Orientation relationships, interface structures, and mechanical properties of directionally solidified MoSi2/Mo5Si3/Mo5Si3C composites , 2016 .

[2]  Hirotaka Matsunoshita,et al.  Microstructures and Mechanical Properties of MoSi 2 / Mo 5 Si 3 / Mo 5 Si 3 C Ternary Eutectic Composite , 2015 .

[3]  Hirotaka Matsunoshita,et al.  Effects of ternary additions on the microstructure and thermal stability of directionally-solidified MoSi2/Mo5Si3 eutectic composites , 2014 .

[4]  A. Inoue,et al.  Plastic Deformation of Directionally-Solidified MoSi 2 /Mo 5 Si 3 Eutectic Composites , 2013 .

[5]  K. Kishida,et al.  Effects of Ternary Additions on the Microstructure of Directionally-Solidified MoSi 2 /Mo 5 Si 3 Eutectic Composites , 2013 .

[6]  Satoshi Hada,et al.  Test Results of the World's First 1,600 o C J-series Gas Turbine , 2012 .

[7]  Y. Kimura,et al.  Fracture toughness and high temperature strength of unidirectionally solidified Nb–Si binary and Nb–Ti–Si ternary alloys , 2006 .

[8]  R. Mitra Mechanical behaviour and oxidation resistance of structural silicides , 2006 .

[9]  J. Lewandowski,et al.  Ultrahigh-Temperature Nb-Silicide-Based Composites , 2003 .

[10]  U. Messerschmidt,et al.  Transmission electron microscopy analysis of planar faults on (001) planes in MoSi2 single crystals , 2002 .

[11]  E. George,et al.  Deformation behavior of Mo5Si3 single crystal at high temperatures , 2002 .

[12]  U. Messerschmidt,et al.  Transmission electron microscopy analysis of planar faults on ( 001 ) planes in MoSi 2 single crystals , 2002 .

[13]  R. Zee,et al.  Yielding and flow behavior of Mo5Si3 single crystals , 2001 .

[14]  H. Inui,et al.  Creep deformation of single crystals of binary and some ternary MoSi2 with the C11b structure , 2000 .

[15]  M. Yamaguchi,et al.  Effects of alloying elements on plastic deformation of single crystals of MoSi2 , 2000 .

[16]  R. Mirshams,et al.  Tensile strengthening in the nickel-base superalloy IN738LC , 2000 .

[17]  H. Inui,et al.  Brittle-ductile behavior of single crystals of MoSi2 , 1999 .

[18]  A. K. Vasudevan,et al.  Key developments in high temperature structural silicides , 1999 .

[19]  T. Nakamoto,et al.  Plastic deformation of single crystals of WSi2 with the C11b structure , 1999 .

[20]  K. Kishida,et al.  Deformation of lamellar structure in TiAl-Ti3Al two-phase alloys , 1998 .

[21]  K. Yama Deformation of lamellar structure in TiAl-Ti3Al two-phase alloys , 1998 .

[22]  T. Nakamoto,et al.  Microstructure and mechanical properties of MoSi2 single crystals and directionally solidified MoSi2-Based alloys , 1997 .

[23]  T. Nakamoto,et al.  Plastic deformation of MoSi2 and WSi2 single crystals and directionally solidified MoSi2-based alloys , 1996 .

[24]  H. Inui,et al.  Plastic deformation of MoSi2 single crystals , 1995 .

[25]  K. Vecchio,et al.  On the nature of faults in MoSi2 , 1995 .

[26]  D. P. Mason,et al.  On the microstructure and crystallography of directionally solidified MoSi2-Mo5Si3 eutectics , 1995 .

[27]  D. P. Mason,et al.  On the creep of directionally solidified MoSi2-Mo5Si3 eutectics , 1995 .

[28]  A. Heuer,et al.  High temperature plastic anisotropy in MoSi2 single crystals , 1995 .

[29]  S. Putatunda,et al.  Tensile behavior of a new single-crystal nickel-based superalloy (CMSX-4) at room and elevated temperatures , 1994, Journal of Materials Engineering and Performance.

[30]  Susil K. Putatunda,et al.  Tensile behavior of a new single crystal nickel-based superalloy (CMSX-4) at room and elevated temperatures , 1994 .

[31]  D. P. Mason,et al.  The effect of microstructural scale on hardness of MoSi2-Mo5Si3 eutectics , 1993 .

[32]  R. R. Cerchiara,et al.  Oxidation of MoSi2 and comparison with other silicide materials , 1992 .

[33]  A. Heuer,et al.  Effects of carbon additions on the high temperature mechanical properties of molybdenum disilicide , 1992 .

[34]  A. Vasudévan,et al.  A comparative overview of molybdenum disilicide composites , 1992 .

[35]  D. P. Mason,et al.  Mechanical behavior and interface design of MoSi2-based alloys and composites , 1992 .

[36]  A. Heuer,et al.  Carbon Additions to Molybdenum Disilicide: Improved High‐Temperature Mechanical Properties , 1991 .

[37]  T. Hirano,et al.  High temperature deformation of MoSi2 single crystals with the C11b structure , 1990 .

[38]  T. Hirano,et al.  High temperature deformation behaviour of MoSi2 and WSi2 single crystals , 1990 .

[39]  J. Hunt,et al.  Lamellar and Rod Eutectic Growth , 1988 .

[40]  J. Hirth,et al.  The deformation behavior of isoaxial bicrystals of Fe-3%Si☆ , 1967 .