Real-time reconfigurable devices implemented in UV-light programmable floating-gate CMOS

This dissertation describes using theory, computer simulations and laboratory measurements a new class of real time reconfigurable UV-programmable floating-gate circuits operating with current levels typically in the pA to μA range, implemented in a standard double-poly CMOS technology. A new design method based on using the same basic two-MOSFET circuits extensively is proposed, meant for improving the opportunities to make larger FGUVMOS circuitry than previously reported. By using the same basic circuitry extensively, instead of different circuitry for basic digital functions, the goal is to ease UV-programming and test and save circuitry on chip and I/O-pads. Matching of circuitry should also be improved by using this approach. Compact circuitry can be made, reducing wiring and active components. Compared to earlier FGUVMOS approaches the number of transistors for implementing the CARRY’ of a FULL-ADDER is reduced from 22 to 2. A complete FULL-ADDER can be implemented using only 8 transistors. 2- MOSFET circuits able to implement CARRY’, NOR, NAND and INVERT functions are demonstrated by measurements on chip, working with power supply voltages ranging from 800 mV down to 93 mV. An 8-transistor FULL-ADDER might use 2500 times less energy than a FULL ADDER implemented using standard cells in the same 0.6 μm CMOS technology while running at 1 MHz. The circuits are also shown to be a new class of linear threshold elements, which is the basic building blocks of neural networks. Theory is developed as a help in the design of floating gate circuits.

[1]  Snorre Aunet,et al.  A New 2-MOSFET Universal Floating-Gate Element for Reconfigurable Digital Logic , 2002 .

[2]  Yngvar Berg,et al.  A novel low-voltage floating-gate CMOS transconductance amplifier with sinh (tanh) shaped output current , 2001, ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483).

[3]  P.M. Furth,et al.  A 500-nW floating-gate amplifier with programmable gain , 1998, 1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268).

[4]  Yngvar Berg,et al.  Floating-gate CMOS differential analog inverter for ultra low-voltage applications , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[5]  Yngvar Berg,et al.  Floating-Gate UVMOS inverter , 1997 .

[6]  Yngvar Berg,et al.  Tunable current mirrors for ultra low voltage , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[7]  Marc Thomas,et al.  Threshold-gates in arithmetic circuits , 2001, ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483).

[8]  Tor Sverre Lande,et al.  FLOGIC-Floating-gate logic for low-power operation , 1996, Proceedings of Third International Conference on Electronics, Circuits, and Systems.

[9]  J. Ramirez-Angulo,et al.  Modeling multiple-input floating-gate transistors for analog signal processing , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[10]  Yngvar Berg,et al.  Ultra low-voltage/low-power digital floating-gate circuits , 1999 .

[11]  Jaime Ram A New Programmable Logic Family Using Multiple-input Floating-Gate Transistors , 1997 .

[12]  M. Wong,et al.  Analysis of the subthreshold slope and the linear transconductance techniques for the extraction of the capacitance coupling coefficients of floating-gate devices , 1992, IEEE Electron Device Letters.

[13]  Trond Ytterdal,et al.  Compact low-voltage self-calibrating digital floating-gate CMOS logic circuits , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[14]  Jehoshua Bruck,et al.  Neural computation of arithmetic functions , 1990 .

[15]  K. Yang,et al.  Subthreshold analysis of floating-gate MOSFET's , 1993, [1993] Proceedings of the Tenth Biennial University/Government/Industry Microelectronics Symposium.

[16]  T. Ohmi,et al.  Neurotransistor:/spl Gt/MINUSa neuron-like high-functionality transistor implementing intelligence on silicon , 1995, VLSI Signal Processing, VIII.

[17]  Paul Hasler,et al.  Cadence-based simulation of floating-gate circuits using the EKV model , 1999, 42nd Midwest Symposium on Circuits and Systems (Cat. No.99CH36356).

[18]  Andreas G. Andreou,et al.  Current-mode subthreshold MOS circuits for analog VLSI neural systems , 1991, IEEE Trans. Neural Networks.

[19]  Tadashi Shibata,et al.  A functional MOS transistor featuring gate-level weighted sum and threshold operations , 1992 .

[20]  Yngvar Berg,et al.  A four transistor rail to rail ultra lowvoltage transconductance amplifier , 1999 .

[21]  Tor Sverre Lande,et al.  Overview of floating-gate devices, circuits, and systems , 2001 .

[22]  Kaushik Roy,et al.  Robust subthreshold logic for ultra-low power operation , 2001, IEEE Trans. Very Large Scale Integr. Syst..

[23]  T. Saether,et al.  Floating-gate low-voltage/low-power linear threshold element for neural computation , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[24]  E. Nowak,et al.  Low-power CMOS at Vdd = 4kT/q , 2001, Device Research Conference. Conference Digest (Cat. No.01TH8561).

[25]  Yngvar Berg,et al.  A Frequency Delta-Sigma Analog-to-Digital Converter Operating at a Power-Supply Voltage of 0.6 V , 2003 .

[26]  J. Burr,et al.  Cryogenic ultra low power CMOS , 1995, 1995 IEEE Symposium on Low Power Electronics. Digest of Technical Papers.

[27]  Tadashi Shibata,et al.  Real-time reconfigurable logic circuits using neuron MOS transistors , 1993, 1993 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[28]  Yngvar Berg,et al.  Novel reconfigurable two-MOSFET UV-programmable floating-gate circuits for CARRY, NAND, NOR or INVERT functions , 2001, ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483).

[29]  Paul E. Hasler,et al.  A high-resolution non-volatile analog memory cell , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.

[30]  Snorre Aunet,et al.  Four-MOSFET Floating-Gate UV-Programmable Elements for Multifunction Binary Logic , 2001 .

[31]  Yngvar Berg,et al.  Ultra-low-voltage floating-gate transconductance amplifiers , 2001 .

[32]  Bevan M. Baas,et al.  Stanford's ultra-low-power CMOS technology and applications , 1996 .

[33]  Yngvar Berg,et al.  Exploiting sinh and tanh shaped ultra low-voltage floating-gate transconductance amplifiers to reduce harmonic distortion , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[34]  Magdy A. Bayoumi,et al.  Performance evaluation of 1-bit CMOS adder cells , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[35]  Miguel Figueroa,et al.  Adaptive CMOS: from biological inspiration to systems-on-a-chip , 2002, Proc. IEEE.

[36]  Christer Svensson Low voltage technologies , 1997 .

[37]  Jan M. Rabaey,et al.  Digital Integrated Circuits: A Design Perspective , 1995 .

[38]  T.S. Lande,et al.  Low-voltage floating-gate current mirrors , 1997, Proceedings. Tenth Annual IEEE International ASIC Conference and Exhibit (Cat. No.97TH8334).

[39]  Terri S. Fiez,et al.  Analog VLSI : signal and information processing , 1994 .

[40]  B. A. Minch Floating-gate techniques for assessing mismatch , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[41]  Kenneth R. Laker,et al.  Design of analog integrated circuits and systems , 1994 .

[42]  T. Ohmi,et al.  Neuron-MOS binary-logic circuits featuring dramatic reduction in transistor count and interconnections , 1992, 1992 International Technical Digest on Electron Devices Meeting.

[43]  Yngvar Berg,et al.  Novel floating-gate multiple-valued signal to binary signal converters for multiple-valued CMOS logic , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[44]  D.M. Kim,et al.  A new measurement technique for capacitive coupling coefficients and 3-D capacitance characteristics in floating-gate devices , 1994, International Electron Devices and Materials Symposium.

[45]  Rodney M. Goodman,et al.  Dynamic charge restoration of floating gate subthreshold MOS translinear circuits , 2001, Proceedings 2001 Conference on Advanced Research in VLSI. ARVLSI 2001.

[46]  Christof Koch,et al.  Computation and the single neuron , 1997, Nature.

[47]  W. P. Millard,et al.  Calibration and matching of floating gate devices , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[48]  M. A. Bayoumi,et al.  A framework for fair performance evaluation of 1-bit full adder cells , 1999, 42nd Midwest Symposium on Circuits and Systems (Cat. No.99CH36356).

[49]  Snorre Aunet,et al.  A New Universal UV-Programmable Floating-Gate Digital Element With Application to an 8-Transistor Full-Adder and a D-Latch , 2002 .

[50]  Yngvar Berg,et al.  Extreme low-voltage floating-gate CMOS transconductance amplifier , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[51]  Siegfried Selberherr,et al.  On the lower bounds of CMOS supply voltage , 1996 .

[52]  Yngvar Berg,et al.  A 0.3 V floating-gate differential amplifier input stage with tunable gain , 2001, ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483).

[53]  Douglas A. Kerns,et al.  UV-activated conductances allow for multiple time scale learning , 1993, IEEE Trans. Neural Networks.

[54]  Tadahiro Ohmi,et al.  Neuron MOS binary-logic integrated circuits. II. Simplifying techniques of circuit configuration and their practical applications , 1993 .

[55]  K. Mameno,et al.  A new method for measuring the coupling coefficient of a split-gate flash EEPROM without an additional test structure , 2001, ICMTS 2001. Proceedings of the 2001 International Conference on Microelectronic Test Structures (Cat. No.01CH37153).

[56]  Yngvar Berg,et al.  Programmable floating-gate MOS logic for low-power operation , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[57]  Vasken Zaven Bohossian,et al.  Neural logic: theory and implementation , 1998 .

[58]  Tadahiro Ohmi,et al.  An intelligent MOS transistor featuring gate-level weighted sum and threshold operations , 1991, International Electron Devices Meeting 1991 [Technical Digest].

[59]  Miguel Figueroa,et al.  Competitive learning with floating-gate circuits , 2002, IEEE Trans. Neural Networks.