Persistence Barcodes Versus Kolmogorov Signatures: Detecting Modes of One-Dimensional Signals
暂无分享,去创建一个
Ulrich Bauer | Axel Munk | Max Wardetzky | Hannes Sieling | A. Munk | M. Wardetzky | H. Sieling | U. Bauer | Ulrich Bauer
[1] Markus Grasmair,et al. The Equivalence of the Taut String Algorithm and BV-Regularization , 2006, Journal of Mathematical Imaging and Vision.
[2] I. Good,et al. Density Estimation and Bump-Hunting by the Penalized Likelihood Method Exemplified by Scattering and Meteorite Data , 1980 .
[3] Sivaraman Balakrishnan,et al. Minimax rates for homology inference , 2011, AISTATS.
[4] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[5] Stephen Smale,et al. Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..
[6] Yu. I. Ingster,et al. Nonparametric Goodness-of-Fit Testing Under Gaussian Models , 2002 .
[7] Herbert Edelsbrunner,et al. Computational Topology - an Introduction , 2009 .
[8] B. Silverman,et al. Using Kernel Density Estimates to Investigate Multimodality , 1981 .
[9] R. Adler,et al. Crackle: The Persistent Homology of Noise , 2013, 1301.1466.
[10] J. Hartigan. Testing for Antimodes , 2000 .
[11] Frédéric Chazal,et al. Geometric Inference for Probability Measures , 2011, Found. Comput. Math..
[12] H. Chan,et al. Detection with the scan and the average likelihood ratio , 2011, 1107.4344.
[13] Sivaraman Balakrishnan,et al. Confidence sets for persistence diagrams , 2013, The Annals of Statistics.
[14] D. Donoho. One-sided inference about functionals of a density , 1988 .
[15] Matthew P. Wand,et al. Kernel Smoothing , 1995 .
[16] David Cohen-Steiner,et al. Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..
[17] S. Geer,et al. Locally adaptive regression splines , 1997 .
[18] D. Donoho,et al. Higher criticism for detecting sparse heterogeneous mixtures , 2004, math/0410072.
[19] I. Johnstone,et al. Wavelet Shrinkage: Asymptopia? , 1995 .
[20] Herbert Edelsbrunner,et al. Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.
[21] J. Wellner,et al. Empirical Processes with Applications to Statistics , 2009 .
[22] E. Rio,et al. Théorie asymptotique de processus aléatoires faiblement dépendants , 2000 .
[23] Peter Bubenik,et al. A statistical approach to persistent homology , 2006, math/0607634.
[24] P. Davies,et al. Densities, spectral densities and modality , 2004, math/0410071.
[25] Jean-Paul Chilès,et al. Wiley Series in Probability and Statistics , 2012 .
[26] Leonidas J. Guibas,et al. Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.
[27] J. Harer,et al. Improving homology estimates with random walks , 2011 .
[28] Ulrich Bauer,et al. Optimal Topological Simplification of Discrete Functions on Surfaces , 2012, Discret. Comput. Geom..
[29] J. Hartigan,et al. The Dip Test of Unimodality , 1985 .
[30] Matthew Kahle,et al. Random Geometric Complexes , 2009, Discret. Comput. Geom..
[31] M. Grasmair,et al. Generalizations of the Taut String Method , 2008 .
[32] Gunnar Carlsson,et al. Topological De-Noising: Strengthening the Topological Signal , 2009, ArXiv.
[33] Sivaraman Balakrishnan,et al. Statistical Inference For Persistent Homology , 2013, arXiv.org.
[34] Jon A. Wellner,et al. Empirical Processes with Applications to Statistics. , 1988 .
[35] G. Carlsson,et al. Statistical topology via Morse theory, persistence and nonparametric estimation , 2009, 0908.3668.
[36] P. Davies,et al. Local Extremes, Runs, Strings and Multiresolution , 2001 .
[37] Don Sheehy,et al. A Multicover Nerve for Geometric Inference , 2012, CCCG.
[38] Maurizio Vichi,et al. Studies in Classification Data Analysis and knowledge Organization , 2011 .