Some Measurability Results for Extrema of Random Functions Over Random Sets

We consider the question, "Under what conditions is the extremum of a random function over a random set itself a random object?" The answer is relevant to problems in both game theory and econometrics, as we illustrate with examples. Our purpose here is to bring the powerful tools of the theory of analytic sets as developed by Dellacherie and Meyer (1978) to the wider attention of the economics profession and to distill Dellacherie and Meyer's work in such a way as to provide some readily accessible theoretical results that will permit relatively easy treatment of economically or econometrically relevant applications.

[1]  Maxwell B. Stinchcombe Bayesian information topologies , 1990 .

[2]  M. Spence Job Market Signaling , 1973 .

[3]  W. Sierpinski Sur l'extension des fonctions de Baire définies sur les ensembles linéaires quelconques , .

[4]  Kevin D. Cotter Correlated equilibrium in games with type-dependent strategies , 1991 .

[5]  A. Gallant,et al.  Semi-nonparametric Maximum Likelihood Estimation , 1987 .

[6]  Ker-Chau Li,et al.  Asymptotic Optimality for $C_p, C_L$, Cross-Validation and Generalized Cross-Validation: Discrete Index Set , 1987 .

[7]  J. Sobel,et al.  A Multistage Model of Bargaining , 1983 .

[8]  M. Spence Competitive and optimal responses to signals: An analysis of efficiency and distribution , 1974 .

[9]  J. Harsanyi Games with randomly disturbed payoffs: A new rationale for mixed-strategy equilibrium points , 1973 .

[10]  Beth E Allen,et al.  Neighboring Information and Distributions of Agents' Characteristics Under Uncertainty , 1983 .

[11]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[12]  E. Damme Stability and perfection of Nash equilibria , 1987 .

[13]  G. Alexits Über die Erweiterung einer Baireschen Funktion , .

[14]  Andrzhei︠a︡ Mostowski,et al.  Set theory : with an introduction to descriptive set theory , 1976 .

[15]  Halbert White,et al.  Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings , 1990, Neural Networks.

[16]  Roy Radner,et al.  Rational expectations in microeconomic models: An overview , 1982 .

[17]  Robert J. Weber,et al.  Distributional Strategies for Games with Incomplete Information , 1985, Math. Oper. Res..

[18]  D. Blackwell On a Class of Probability Spaces , 1956 .

[19]  Wacław Sierpiński,et al.  Les ensembles projectifs et analytiques , 1950 .

[20]  G. Debreu Integration of correspondences , 1967 .

[21]  L. Brown,et al.  Measurable Selections of Extrema , 1973 .

[22]  J. Sobel,et al.  STRATEGIC INFORMATION TRANSMISSION , 1982 .

[23]  R. M. Dudley,et al.  Real Analysis and Probability , 1989 .

[24]  Kenneth Schilling,et al.  A Zero-Sum Game with Incomplete Information and Compact Action Spaces , 1986, Math. Oper. Res..

[25]  Joseph E. Stiglitz,et al.  Equilibrium in Competitive Insurance Markets: An Essay on the Economics of Imperfect Information , 1976 .

[26]  J. Hoffmann-Jørgensen The theory of analytic spaces , 1970 .

[27]  Erik J. Balder,et al.  Generalized Equilibrium Results for Games with Incomplete Information , 1988, Math. Oper. Res..

[28]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[29]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[30]  David M. Kreps,et al.  Reputation and imperfect information , 1982 .

[31]  H. Lebesgue Sur les fonctions representables analytiquement , 1905 .