InP Microdisk Lasers Integrated on Si for Optical Interconnects

We review recent theoretical and experimental work on InP membrane microdisk lasers heterogeneously integrated on SOI and coupled to a Si bus waveguide. The lasers can now be fabricated with very high yield, have typical threshold currents of 0.5 mA and output powers of tens of μW, while the total power consumption is restricted to 5 mW. First, we describe various improvements in the fabrication technology and interesting results on the uniformity in device characteristics. In a second part, unidirectional behaviour and reflection sensitivity are briefly discussed. The third part is focused on optical signal regeneration with microdisk lasers. The last part contains a brief summary of optical interconnects based on heterogeneously integrated microdisk lasers and heterogeneously integrated photodetectors.

[1]  Liu Liu,et al.  A Thermally Tunable III–V Compound Semiconductor Microdisk Laser Integrated on Silicon-on-Insulator Circuits , 2010, IEEE Photonics Technology Letters.

[2]  J. Danckaert,et al.  Injection Locking and Switching Operations of a Novel Retro-Reflector-Cavity-Based Semiconductor Micro-Ring Laser , 2008, IEEE Photonics Technology Letters.

[3]  de T Tjibbe Vries,et al.  All-optical wavelength conversion using mode switching in InP microdisc laser , 2011 .

[4]  P. Crozat,et al.  42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. , 2009, Optics express.

[5]  J. Fédéli,et al.  Compact Integration of Optical Sources and Detectors on SOI for Optical Interconnects Fabricated in a 200 mm CMOS Pilot Line , 2012, Journal of Lightwave Technology.

[6]  D. Miller,et al.  Are optical transistors the logical next step , 2010 .

[7]  N. Kernevez,et al.  InP dies transferred onto silicon substrate for optical interconnects application , 2006 .

[8]  R. G. Beausoleil,et al.  Optimization of Hybrid Silicon Microring Lasers , 2011, IEEE Photonics Journal.

[9]  G. Raybon,et al.  Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration , 2001, IEEE Photonics Technology Letters.

[10]  Geert Morthier,et al.  An ultra-small, low-power all-optical flip-flop memory on a silicon chip , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[11]  A. Chraplyvy,et al.  Regimes of feedback effects in 1.5-µm distributed feedback lasers , 1986 .

[12]  M. Smit,et al.  Adhesive Bonding of InP ∕ InGaAsP Dies to Processed Silicon-On-Insulator Wafers using DVS-bis-Benzocyclobutene , 2006 .

[13]  David Chapman,et al.  High-Quality 150 mm InP-to-Silicon Epitaxial Transfer for Silicon Photonic Integrated Circuits , 2009 .

[14]  R Baets,et al.  Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs. , 2006, Optics express.

[15]  M. Rochette,et al.  2R optical regeneration: an all-optical solution for BER improvement , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Marc Sorel,et al.  All-Optical Toggle Flip-Flop Based on Monolithic Semiconductor Ring Laser , 2014, IEEE Photonics Technology Letters.

[17]  I. Sagnes,et al.  Thermal improvement of InP wire photonic crystal laser on silicon by addition of Diamond Nanoparticles in polymer bonding layer , 2010, 36th European Conference and Exhibition on Optical Communication.

[18]  M. Yamamoto,et al.  MOVPE growth of strained InAsP/InGaAsP quantum-well structures for low-threshold 1.3-/spl mu/m lasers , 1994 .

[19]  M. Sorel,et al.  Unidirectional Bistability in AlGaInAs Microring and Microdisk Semiconductor Lasers , 2009, IEEE Photonics Technology Letters.

[20]  Geert Morthier,et al.  Theoretical Analysis of Unidirectional Operation and Reflection Sensitivity of Semiconductor Ring or Disk Lasers , 2013, IEEE Journal of Quantum Electronics.

[21]  M. I. Memon,et al.  Characterization of All-Optical Regeneration Potentials of a Bistable Semiconductor Ring Laser , 2009, Journal of Lightwave Technology.

[22]  B. Fernier,et al.  Determination of the gain compression coefficient of GaInAsP 1.5-µm multiple quantum-well lasers by harmonic distortion measurements , 1991 .

[23]  Rémy Braive,et al.  Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides , 2010 .

[24]  D Van Thourhout,et al.  Uniformity of the lasing wavelength of heterogeneously integrated InP microdisk lasers on SOI. , 2013, Optics express.

[25]  John E. Bowers,et al.  High-speed InGaAsP constricted-mesa lasers , 1986 .

[26]  R Baets,et al.  Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit. , 2006, Optics express.

[27]  David Pan,et al.  Nanophotonic devices for power-efficient computing and optical interconnects , 2017, 2017 IEEE Photonics Society Summer Topical Meeting Series (SUM).

[28]  Di Liang,et al.  Teardrop Reflector-Assisted Unidirectional Hybrid Silicon Microring Lasers , 2012, IEEE Photonics Technology Letters.

[29]  Cary Gunn,et al.  CMOS Photonics for High-Speed Interconnects , 2006, IEEE Micro.

[30]  van Pj René Veldhoven,et al.  Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate , 2013 .

[31]  D Van Thourhout,et al.  Unidirectional III-V microdisk lasers heterogeneously integrated on SOI. , 2013, Optics express.

[32]  G. Roelkens,et al.  All-optical, low-power 2R regeneration of 10Gb/s NRZ signals using a III–V on SOI microdisk laser , 2013, 2013 18th OptoElectronics and Communications Conference held jointly with 2013 International Conference on Photonics in Switching (OECC/PS).

[33]  M. Smit,et al.  A fast low-power optical memory based on coupled micro-ring lasers , 2004, Nature.

[34]  Masaya Notomi,et al.  Photonic crystal lasers using wavelength-scale embedded active region , 2014 .

[35]  John E. Bowers,et al.  Energy Efficient and Energy Proportional Optical Interconnects for Multi-Core Processors: Driving the Need for On-Chip Sources , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  R. Kumar,et al.  10 Gbit/s all-optical NRZ-OOK to RZ-OOK format conversion in an ultra-small III-V-on-silicon microdisk fabricated in a CMOS pilot line. , 2011, Optics express.