FIRST SEASON MWA EOR POWER SPECTRUM RESULTS AT REDSHIFT 7
暂无分享,去创建一个
A. R. Whitney | S. J. Tingay | G. Bernardi | D. A. Mitchell | S. M. Ord | L. J. Greenhill | B. Pindor | R. B. Wayth | M. Johnston-Hollitt | N. Udaya Shankar | N. Hurley-Walker | J. C. Pober | M. Tegmark | C. M. Trott | Nithyanandan Thyagarajan | Judd D. Bowman | A. E. E. Rogers | P. Carroll | E. Lenc | K. S. Srivani | A. R. Offringa | P. Procopio | J. C. Kasper | B. J. Hazelton | M. F. Morales | A. P. Beardsley | F. Briggs | D. Emrich | A. Ewall-Wice | J. N. Hewitt | J. Line | Daniel C. Jacobs | E. Morgan | A. Roshi | B. M. Gaensler | R. L. Webster | B. McKinley | D. L. Kaplan | J. S. B. Wyithe | Joshua S. Dillon | T. Prabu | Max Tegmark | E. Lenc | D. Kaplan | J. Hewitt | B. Pindor | R. Webster | S. Tingay | M. Morales | C. Trott | E. Morgan | A. D. Oliveira-Costa | A. Loeb | D. Oberoi | P. Carroll | A. Rogers | B. Corey | R. Cappallo | A. Whitney | I. Sullivan | R. Wayth | P. Procopio | J. Kasper | A. Offringa | J. Pober | A. Beardsley | G. Bernardi | J. Bowman | J. Dillon | A. Ewall-Wice | B. Hazelton | D. Jacobs | A. Neben | N. Thyagarajan | J. Wyithe | R. Goeke | R. Subrahmanyan | M. Johnston-Hollitt | F. Briggs | B. Gaensler | D. Mitchell | L. Greenhill | S. Ord | C. Lonsdale | S. McWhirter | M. Lynch | M. Waterson | A. Williams | S. Sethi | D. Emrich | N. Hurley-Walker | N. Shankar | K. Srivani | B. McKinley | C. Wu | E. Kratzenberg | T. Prabu | A. Roshi | C. Williams | L. Feng | J. Riding | J. Line | M. Rahimi | N. Barry | A. Williams | M. Busch | N. Barry | R. J. Cappallo | B. E. Corey | A. de Oliveira-Costa | L. Feng | R. Goeke | E. Kratzenberg | A. Loeb | C. J. Lonsdale | M. J. Lynch | S. R. McWhirter | A. R. Neben | D. Oberoi | J. Riding | R. Subrahmanyan | I. S. Sullivan | M. Waterson | C. L. Williams | C. Wu | H. S. Kim | S. Paul | Shiv K. Sethi | M. Rahimi | M. P. Busch | S. Paul | H. Kim
[1] Max Tegmark,et al. A high reliability survey of discrete Epoch of Reionization foreground sources in the MWA EoR0 field , 2016, 1607.03861.
[2] J. Scargle. Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .
[3] A. R. Whitney,et al. A new layout optimization technique for interferometric arrays, applied to the MWA , 2012, 1203.1293.
[4] S. Markoff,et al. LOFAR - low frequency array , 2006 .
[5] Cathryn M. Trott,et al. THE IMPACT OF POINT-SOURCE SUBTRACTION RESIDUALS ON 21 cm EPOCH OF REIONIZATION ESTIMATION , 2012, 1208.0646.
[6] Mervyn J. Lynch,et al. THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS , 2009, 0904.2334.
[7] Daniel A. Mitchell,et al. CHIPS: THE COSMOLOGICAL H i POWER SPECTRUM ESTIMATOR , 2016, 1601.02073.
[8] Miguel F. Morales,et al. Software holography: interferometric data analysis for the challenges of next generation observatories , 2008, 0810.5107.
[9] David F. Moore,et al. PAPER-64 CONSTRAINTS ON REIONIZATION: THE 21 cm POWER SPECTRUM AT z = 8.4 , 2015, 1502.06016.
[10] E. Lenc,et al. GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey , 2015, Publications of the Astronomical Society of Australia.
[11] J. Pober,et al. Constraints on the temperature of the intergalactic medium at z = 8.4 with 21-cm observations , 2015, 1509.02158.
[12] Max Tegmark,et al. A fast method for power spectrum and foreground analysis for 21 cm cosmology , 2013 .
[13] Lars Hernquist,et al. PROBING REIONIZATION WITH THE 21 CM GALAXY CROSS-POWER SPECTRUM , 2008, 0806.1055.
[14] Hannes Jensen,et al. Predictions for the 21 cm-galaxy cross-power spectrum observable with LOFAR and Subaru , 2015, 1509.03464.
[15] Marco Piras,et al. Antenna Pattern Verification System Based on a Micro Unmanned Aerial Vehicle (UAV) , 2014, IEEE Antennas and Wireless Propagation Letters.
[16] Michael Biehl,et al. Post‐correlation radio frequency interference classification methods , 2010, 1002.1957.
[17] Abraham Loeb,et al. 21 cm cosmology in the 21st century , 2011, Reports on progress in physics. Physical Society.
[18] Cathryn M. Trott,et al. Epoch of reionization window. I. Mathematical formalism , 2014, 1404.2596.
[19] Max Tegmark,et al. A method for 21 cm power spectrum estimation in the presence of foregrounds , 2011, Physical Review D.
[20] A. R. Whitney,et al. THE IMPORTANCE OF WIDE-FIELD FOREGROUND REMOVAL FOR 21 cm COSMOLOGY: A DEMONSTRATION WITH EARLY MWA EPOCH OF REIONIZATION OBSERVATIONS , 2016, 1601.06177.
[21] M. Morales,et al. THE FUNDAMENTAL MULTI-BASELINE MODE-MIXING FOREGROUND IN 21 cm EPOCH OF REIONIZATION OBSERVATIONS , 2013, 1301.3126.
[22] M. Morales,et al. Calibration requirements for detecting the 21 cm epoch of reionization power spectrum and implications for the SKA , 2016, 1603.00607.
[23] Mark Waterson,et al. A digital-receiver for the MurchisonWidefield Array , 2015, 1502.05015.
[24] University College London,et al. Polarization leakage in epoch of reionization windows – II. Primary beam model and direction-dependent calibration , 2016, 1604.04534.
[25] A. R. Whitney,et al. THE MURCHISON WIDEFIELD ARRAY 21 cm POWER SPECTRUM ANALYSIS METHODOLOGY , 2016, 1605.06978.
[26] Christopher L. Williams,et al. GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey - I. A low-frequency extragalactic catalogue , 2016, 1610.08318.
[27] Jason Manley,et al. OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER , 2013, 1301.7099.
[28] A. R. Whitney,et al. The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.
[29] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[30] C. Breuck,et al. A sample of 669 ultra steep spectrum radio sources to find high redshift radio galaxies , 2000, astro-ph/0002297.
[31] M. I. Large,et al. The Molonglo Reference Catalogue of radio sources. , 1981 .
[32] S. J. Tingay,et al. The Low-Frequency Environment of the Murchison Widefield Array: Radio-Frequency Interference Analysis and Mitigation , 2015, Publications of the Astronomical Society of Australia.
[33] W. A. Coles,et al. Interferometric Imaging with the 32 Element Murchison Wide-Field Array , 2010, 1010.1733.
[34] Judd D. Bowman,et al. FOREGROUND CONTAMINATION IN INTERFEROMETRIC MEASUREMENTS OF THE REDSHIFTED 21 cm POWER SPECTRUM , 2008, 0807.3956.
[35] Asantha Cooray,et al. PROSPECTS FOR DETECTING C II EMISSION DURING THE EPOCH OF REIONIZATION , 2014, 1410.4808.
[36] N. Udaya Shankar,et al. IMAGING THE EPOCH OF REIONIZATION: LIMITATIONS FROM FOREGROUND CONFUSION AND IMAGING ALGORITHMS , 2011, 1106.1297.
[37] Matthew Malloy,et al. IDENTIFYING IONIZED REGIONS IN NOISY REDSHIFTED 21 cm DATA SETS , 2012, 1212.2656.
[38] A. R. Whitney,et al. LOW-FREQUENCY OBSERVATIONS OF LINEARLY POLARIZED STRUCTURES IN THE INTERSTELLAR MEDIUM NEAR THE SOUTH GALACTIC POLE , 2016, 1607.05779.
[39] A. A. Deshpande,et al. Empirical covariance modeling for 21 cm power spectrum estimation: A method demonstration and new limits from early Murchison Widefield Array 128-tile data , 2015, 1506.01026.
[40] J. Curran,et al. SUMSS: a wide-field radio imaging survey of the southern sky – II. The source catalogue , 2003, astro-ph/0303188.
[41] D. Kaplan,et al. The EoR sensitivity of the Murchison Widefield Array , 2012, 1204.3111.
[42] Miguel F. Morales,et al. Toward Epoch of Reionization Measurements with Wide-Field Radio Observations , 2003 .
[43] C. A. Oxborrow,et al. Planck intermediate results - XLVII. Planck constraints on reionization history , 2016, 1605.03507.
[44] Nipanjana Patra,et al. SARAS: a precision system for measurement of the cosmic radio background and signatures from the epoch of reionization , 2012, 1211.3800.
[45] S. J. Tingay,et al. Parametrizing Epoch of Reionization foregrounds: a deep survey of low-frequency point-source spectra with the Murchison Widefield Array , 2016, 1602.02247.
[46] Roger Cappallo,et al. The Murchison Widefield Array Commissioning Survey: A Low-Frequency Catalogue of 14 110 Compact Radio Sources over 6 100 Square Degrees , 2014, Publications of the Astronomical Society of Australia.
[47] D. R. DeBoer,et al. Hydrogen Epoch of Reionization Array (HERA) , 2016, 1606.07473.
[48] Judd D. Bowman,et al. IMPROVING FOREGROUND SUBTRACTION IN STATISTICAL OBSERVATIONS OF 21 cm EMISSION FROM THE EPOCH OF REIONIZATION , 2006 .
[49] O. Lahav,et al. A CENSUS OF STAR-FORMING GALAXIES IN THE Z ∼ 9–10 UNIVERSE BASED ON HST+SPITZER OBSERVATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE Z ∼ 9–10 GALAXIES AND IMPROVED CONSTRAINTS ON THE STAR FORMATION RATE DENSITY AT Z ∼ 9.2 , 2012, 1211.2230.
[50] M. Morales,et al. Reionization and Cosmology with 21-cm Fluctuations , 2009, 0910.3010.
[51] Judd D. Bowman,et al. The Sensitivity of First-Generation Epoch of Reionization Observatories and Their Potential for Differentiating Theoretical Power Spectra , 2005, astro-ph/0507357.
[52] Max Tegmark,et al. A model of diffuse Galactic radio emission from 10 MHz to 100 GHz , 2008, 0802.1525.
[53] Steven Furlanetto,et al. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .
[54] Cathryn M. Trott,et al. Epoch of reionization window. II. Statistical methods for foreground wedge reduction , 2014, 1404.4372.
[55] Roger J. Cappallo,et al. Real-Time Calibration of the Murchison Widefield Array , 2008, IEEE Journal of Selected Topics in Signal Processing.
[56] Max Tegmark,et al. Mapmaking for precision 21 cm cosmology , 2014, Physical Review D.
[57] Christopher Hirata,et al. A simulation-calibrated limit on the H i power spectrum from the GMRT Epoch of Reionization experiment , 2013, 1301.5906.
[58] A. A. Deshpande,et al. FAST HOLOGRAPHIC DECONVOLUTION: A NEW TECHNIQUE FOR PRECISION RADIO INTERFEROMETRY , 2012, 1209.1653.
[59] I. McGreer,et al. Model-independent evidence in favour of an end to reionization by z ≈ 6 , 2014, 1411.5375.
[60] Stefan J. Wijnholds,et al. Fast gain calibration in radio astronomy using alternating direction implicit methods: Analysis and applications , 2014, 1410.2101.
[61] Max Tegmark,et al. FOREGROUNDS IN WIDE-FIELD REDSHIFTED 21 cm POWER SPECTRA , 2015, 1502.07596.
[62] A. H. Patil,et al. Systematic biases in low-frequency radio interferometric data due to calibration: the LOFAR-EoR case , 2016, 1605.07619.
[63] C. Trott. Comparison of Observing Modes for Statistical Estimation of the 21 cm Signal from the Epoch of Reionisation , 2014, Publications of the Astronomical Society of Australia.
[64] David F. Moore,et al. New Limits on 21cm EoR From PAPER-32 Consistent with an X-Ray Heated IGM at z=7.7 , 2013, 1304.4991.
[65] B. Mobasher,et al. JD 12: The First Galaxies - Theoretical Predictions and Observational Clues , 2009, Proceedings of the International Astronomical Union.
[66] O. López-Cruz,et al. PROBING THE DARK AGES AT z ∼ 20: THE SCI-HI 21 cm ALL-SKY SPECTRUM EXPERIMENT , 2013, 1311.0014.
[67] Max Tegmark,et al. CONFIRMATION OF WIDE-FIELD SIGNATURES IN REDSHIFTED 21 cm POWER SPECTRA , 2015, 1506.06150.
[68] Hannes Jensen,et al. Reionization and the Cosmic Dawn with the Square Kilometre Array , 2012, 1210.0197.
[69] Rachel L. Webster,et al. Overcoming real-world obstacles in 21 cm power spectrum estimation: A method demonstration and results from early Murchison Widefield Array data , 2013, 1304.4229.
[70] A. Loeb,et al. The First Galaxies in the Universe , 2013 .
[71] Alexander S. Szalay,et al. TO APPEAR IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 PROBABILISTIC CROSS-IDENTIFICATION OF ASTRONOMICAL SOURCES , 2008 .
[72] G. W. Pratt,et al. Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.
[73] Abhirup Datta,et al. BRIGHT SOURCE SUBTRACTION REQUIREMENTS FOR REDSHIFTED 21 cm MEASUREMENTS , 2010 .
[74] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[75] Bertrand Mennesson,et al. Cosmology with the SPHEREX All-Sky Spectral Survey , 2014, 1412.4872.
[76] Alan E. E. Rogers,et al. Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.
[77] D. DeBoer,et al. EFFECTS OF ANTENNA BEAM CHROMATICITY ON REDSHIFTED 21 cm POWER SPECTRUM AND IMPLICATIONS FOR HYDROGEN EPOCH OF REIONIZATION ARRAY , 2016, 1603.08958.
[78] J. Usón,et al. Correcting direction-dependent gains in the deconvolution of radio interferometric images , 2008, 0805.0834.
[79] E. Lenc,et al. Understanding instrumental Stokes leakage in Murchison Widefield Array polarimetry , 2014, 1412.4466.
[80] Christopher L. Williams,et al. A STUDY OF FUNDAMENTAL LIMITATIONS TO STATISTICAL DETECTION OF REDSHIFTED H i FROM THE EPOCH OF REIONIZATION , 2013, 1308.0565.
[81] David F. Moore,et al. A PER-BASELINE, DELAY-SPECTRUM TECHNIQUE FOR ACCESSING THE 21 cm COSMIC REIONIZATION SIGNATURE , 2012, 1204.4749.
[82] David R. DeBoer,et al. PAPER-64 CONSTRAINTS ON REIONIZATION. II. THE TEMPERATURE OF THE z = 8.4 INTERGALACTIC MEDIUM , 2015, 1503.00045.
[83] M. Morales,et al. ADDING CONTEXT TO JAMES WEBB SPACE TELESCOPE SURVEYS WITH CURRENT AND FUTURE 21 cm RADIO OBSERVATIONS , 2014, 1410.5427.
[84] A. Rogers,et al. A lower limit of Δz > 0.06 for the duration of the reionization epoch , 2010, Nature.
[85] R. Ekers,et al. BIGHORNS - Broadband Instrument for Global HydrOgen ReioNisation Signal , 2015, Publications of the Astronomical Society of Australia.
[86] H. Rix,et al. The James Webb Space Telescope , 2006, astro-ph/0606175.
[87] Max Tegmark,et al. First limits on the 21 cm power spectrum during the Epoch of X-ray heating , 2016, Monthly Notices of the Royal Astronomical Society.
[88] E. Greisen,et al. The NRAO VLA Sky Survey , 1996 .
[89] Bryna Hazelton,et al. FOUR FUNDAMENTAL FOREGROUND POWER SPECTRUM SHAPES FOR 21 cm COSMOLOGY OBSERVATIONS , 2012, 1202.3830.
[90] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.
[91] Robert H. Becker,et al. Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.
[92] S. J. Tingay,et al. Measuring phased‐array antenna beampatterns with high dynamic range for the Murchison Widefield Array using 137 MHz ORBCOMM satellites , 2015, 1505.07114.
[93] David R. DeBoer,et al. MULTIREDSHIFT LIMITS ON THE 21 cm POWER SPECTRUM FROM PAPER , 2014, 1408.3389.