Sensitivity of HAWC to high-mass dark matter annihilations

© 2014 American Physical Society. The High Altitude Water Cherenkov (HAWC) observatory is a wide field-of-view detector sensitive to gamma rays of 100 GeV to a few hundred TeV. Located in central Mexico at 19° North latitude and 4100 m above sea level, HAWC will observe gamma rays and cosmic rays with an array of water Cherenkov detectors. The full HAWC array is scheduled to be operational in Spring 2015. In this paper, we study the HAWC sensitivity to the gamma-ray signatures of high-mass (multi-TeV) dark matter annihilation. The HAWC observatory will be sensitive to diverse searches for dark matter annihilation, including annihilation from extended dark matter sources, the diffuse gamma-ray emission from dark matter annihilation, and gamma-ray emission from nonluminous dark matter subhalos. Here we consider the HAWC sensitivity to a subset of these sources, including dwarf galaxies, the M31 galaxy, the Virgo cluster, and the Galactic center. We simulate the HAWC response to gamma rays from these sources in several well-motivated dark matter annihilation channels. If no gamma-ray excess is observed, we show the limits HAWC can place on the dark matter cross section from these sources. In particular, in the case of dark matter annihilation into gauge bosons, HAWC will be able to detect a narrow range of dark matter masses to cross sections below thermal. HAWC should also be sensitive to nonthermal cross sections for masses up to nearly 1000 TeV. The constraints placed by HAWC on the dark matter cross section from known sources should be competitive with current limits in the mass range where HAWC has similar sensitivity. HAWC can additionally explore higher dark matter masses than are currently constrained.

[1]  Yang Bai,et al.  Geometric compatibility of IceCube TeV-PeV neutrino excess and its galactic dark matter origin , 2013, 1311.5864.

[2]  M. Kaplinghat,et al.  Astrophysical and dark matter interpretations of extended gamma-ray emission from the Galactic Center , 2014, 1402.4090.

[3]  Stanford,et al.  The flattening of the concentration–mass relation towards low halo masses and its implications for the annihilation signal boost , 2013, 1312.1729.

[4]  J. P. Rodrigues,et al.  Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector , 2013, Science.

[5]  Danzengluobu,et al.  Medium scale anisotropy in the TeV cosmic ray flux observed by ARGO-YBJ , 2013, 1309.6182.

[6]  P. Serpico,et al.  Are IceCube neutrinos unveiling PeV-scale decaying dark matter? , 2013, 1308.1105.

[7]  P. Serpico,et al.  Bremsstrahlung gamma rays from light dark matter , 2013, 1307.7152.

[8]  J. P. Harding The TeV Cosmic-Ray Anisotropy from Local Dark Matter Annihilation , 2013, 1307.6537.

[9]  Spain,et al.  Optimized DarkMatter Searches in Deep Observations of Segue 1 with MAGIC , 2013 .

[10]  William H. Lee,et al.  Sensitivity of the high altitude water Cherenkov detector to sources of multi-TeV gamma rays , 2013, 1306.5800.

[11]  L. Fortson,et al.  Search for Dark Matter Subhalos in the High-Energy Gamma-ray Band with Fermi and the Cherenkov Telescope Array , 2013, 1305.0312.

[12]  E. Kirby,et al.  SEGUE 2: THE LEAST MASSIVE GALAXY , 2013, 1304.6080.

[13]  P. O. Hulth,et al.  First observation of PeV-energy neutrinos with IceCube. , 2013, Physical review letters.

[14]  D. Hooper,et al.  Dark Matter and Pulsar Origins of the Rising Cosmic Ray Positron Fraction in Light of New Data From AMS , 2013, 1304.1840.

[15]  P. Lipari,et al.  First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5350 GeV , 2013 .

[16]  J. Cembranos,et al.  Spectral study of the HESS J1745-290 gamma-ray source as dark matter signal , 2013, 1302.6871.

[17]  P. O. Hulth,et al.  Observation of cosmic-ray anisotropy with the icetop air shower array , 2012, 1210.5278.

[18]  A. Kounine,et al.  The Alpha Magnetic Spectrometer on the International Space Station , 2012 .

[19]  J. Beacom,et al.  Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation , 2012, 1204.3622.

[20]  T. Weekes,et al.  VERITAS deep observations of the dwarf spheroidal galaxy Segue 1 , 2012, 1202.2144.

[21]  J. P. Harding,et al.  Constraints on WIMP and Sommerfeld-enhanced dark matter annihilation from HESS observations of the galactic center , 2011, 1110.6151.

[22]  T Glanzman,et al.  Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope. , 2011, Physical review letters.

[23]  J. P. Harding,et al.  Current and Future Constraints on Dark Matter from Prompt and Inverse-Compton Photon Emission in the Isotropic Diffuse Gamma-ray Background , 2010, 1011.5090.

[24]  M. V. Fernandes,et al.  SEARCH FOR DARK MATTER ANNIHILATION SIGNALS FROM THE FORNAX GALAXY CLUSTER WITH H . , 2012 .

[25]  A. Geringer-Sameth,et al.  Exclusion of canonical weakly interacting massive particles by joint analysis of Milky Way dwarf galaxies with data from the Fermi Gamma-Ray Space Telescope. , 2011, Physical review letters.

[26]  D. Hooper,et al.  On The Origin Of The Gamma Rays From The Galactic Center , 2011, 1110.0006.

[27]  T Glanzman,et al.  Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. , 2011, Physical review letters.

[28]  A. R. Bazer-Bachi,et al.  Search for a dark matter annihilation signal from the galactic center halo with H.E.S.S. , 2011, Physical review letters.

[29]  P. Munar-Adrover,et al.  Searches for dark matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope , 2011, 1103.0477.

[30]  S. Dodelson,et al.  Robust approach to constraining dark matter properties with gamma-ray data , 2011, 1103.5779.

[31]  N. B. Conklin,et al.  COSMIC-RAY PROTON AND HELIUM SPECTRA FROM THE FIRST CREAM FLIGHT , 2011, 1102.2575.

[32]  A. Quirrenbach,et al.  H.E.S.S. constraints on dark matter annihilations towards the sculptor and carina dwarf galaxies , 2010, 1012.5602.

[33]  Gianfranco Bertone,et al.  Implications of High-Resolution Simulations on Indirect Dark Matter Searches , 2009, 0908.0195.

[34]  T. Jeltema,et al.  Constraints on decaying dark matter from Fermi observations of nearby galaxies and clusters , 2010, 1009.5988.

[35]  R. Guenette,et al.  VERITAS SEARCH FOR VHE GAMMA-RAY EMISSION FROM DWARF SPHEROIDAL GALAXIES , 2010, 1006.5955.

[36]  Jonathan L. Feng,et al.  Sommerfeld enhancements for thermal relic dark matter , 2010, 1005.4678.

[37]  Yasushi Fukazawa,et al.  OBSERVATIONS OF MILKY WAY DWARF SPHEROIDAL GALAXIES WITH THE FERMI-LARGE AREA TELESCOPE DETECTOR AND CONSTRAINTS ON DARK MATTER MODELS , 2010 .

[38]  Jonathan L. Feng Dark Matter Candidates from Particle Physics and Methods of Detection , 2010, 1003.0904.

[39]  C. Kilic,et al.  Conservative constraints on dark matter from the Fermi-LAT isotropic diffuse gamma-ray background spectrum , 2010, 1002.3820.

[40]  M. Kamionkowski,et al.  Galactic substructure and dark-matter annihilation in the Milky Way halo , 2010, 1001.3144.

[41]  P. Panci,et al.  Diffuse gamma ray constraints on annihilating or decaying Dark Matter after Fermi , 2009, 0912.0663.

[42]  D. Berley,et al.  ERRATUM: “MILAGRO OBSERVATIONS OF MULTI-TeV EMISSION FROM GALACTIC SOURCES IN THE FERMI BRIGHT SOURCE LIST” (2009, ApJ, 700, L127) , 2009 .

[43]  T. Jeltema,et al.  Extragalactic Inverse Compton Light from Dark Matter Annihilation and the Pamela Positron Excess , 2009, 0906.0001.

[44]  P. Panci,et al.  Inverse Compton constraints on the Dark Matter e+e- excesses , 2009, 0904.3830.

[45]  D. Berley,et al.  MILAGRO OBSERVATIONS OF MULTI-TeV EMISSION FROM GALACTIC SOURCES IN THE FERMI BRIGHT SOURCE LIST , 2009, 0904.1018.

[46]  G. C. Barbarino,et al.  An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.

[47]  Joseph Silk,et al.  Can the WIMP annihilation boost factor be boosted by the Sommerfeld enhancement , 2008, 0812.0360.

[48]  D. Finkbeiner,et al.  The PAMELA Positron Excess from Annihilations into a Light Boson , 2008, 0810.5344.

[49]  Joachim Stadel,et al.  Quantifying the heart of darkness with GHALO – a multibillion particle simulation of a galactic halo , 2008, 0808.2981.

[50]  D. Finkbeiner,et al.  The Case for a 700+ GeV WIMP: Cosmic Ray Spectra from ATIC and PAMELA , 2008 .

[51]  Carlos S. Frenk,et al.  The diversity and similarity of simulated cold dark matter haloes , 2008, 0810.1522.

[52]  A. Strumia,et al.  Minimal Dark Matter predictions and the PAMELA positron excess , 2008, 0808.3867.

[53]  D. Berley,et al.  Discovery of localized regions of excess 10-TeV cosmic rays. , 2008, Physical review letters.

[54]  R. Ellsworth,et al.  Photocathode-Uniformity Tests of the Hamamatsu R5912 Photomultiplier Tubes Used in the Milagro Experiment , 2007, 0711.1910.

[55]  F. Cerutti,et al.  The FLUKA code: Description and benchmarking , 2007 .

[56]  V. Vasileiou Monte Carlo Simulation of the Milagro Gamma-ray Observatory , 2007 .

[57]  S. Incerti,et al.  Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.

[58]  A. Ferrari,et al.  FLUKA: A Multi-Particle Transport Code , 2005 .

[59]  S. Profumo TeV γ-rays and the largest masses and annihilation cross sections of neutralino dark matter , 2005, astro-ph/0508628.

[60]  TeV γ-radiation from Dark Matter annihilation in the Galactic center , 2005 .

[61]  A. Babul,et al.  Investigating the Andromeda stream — I. Simple analytic bulge—disc—halo model for M31 , 2005, astro-ph/0501240.

[62]  Gamma rays from Kaluza-Klein dark matter. , 2004, Physical review letters.

[63]  D. Horns TeV $\gamma$-radiation from Dark Matter annihilation in the Galactic center , 2004, astro-ph/0408192.

[64]  Frank W. Samuelson,et al.  TeV Gamma-Ray Survey of the Northern Hemisphere Sky Using the Milagro Observatory , 2004 .

[65]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[66]  L. Hui Unitarity bounds and the cuspy halo problem. , 2001, Physical review letters.

[67]  J. Knapp,et al.  CORSIKA: A Monte Carlo code to simulate extensive air showers , 1998 .

[68]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[69]  M. Kamionkowski,et al.  Unitarity limits on the mass and radius of dark-matter particles. , 1990, Physical review letters.