Sensitivity of HAWC to high-mass dark matter annihilations
暂无分享,去创建一个
J. C. Arteaga-Velázquez | B. Patricelli | S. BenZvi | D. Berley | T. DeYoung | J. C. Díaz-Vélez | I. Taboada | P. Toale | S. Westerhoff | J. Wood | G. Yodh | R. Springer | J. Linnemann | K. Tollefson | M. Castillo | E. Linares | G. Kunde | R. Luna-García | B. Dingus | R. Ellsworth | J. Goodman | J. Mcenery | A. Smith | H. A. Solares | J. P. Harding | A. Iriarte | L. Villaseñor | J. Matthews | V. Grabski | L. Nellen | A. Zepeda | A. Sandoval | H. L. Vargas | R. Arceo | G. Sinnis | A. Marinelli | R. Lauer | D. Lennarz | R. Alfaro | D. Kieda | F. Salesa | D. Zaborov | C. Hui | A. Imran | M. Mostafá | K. Caballero-Mora | M. DuVernois | A. Barber | M. González | T. Ukwatta | K. Abazajian | A. Abeysekara | C. Álvarez | J. Álvarez | J. Braun | A. Carramiñana | U. Cotti | J. Cotzomi | C. D. León | E. D. L. Fuente | D. Fiorino | N. Fraija | F. Garfias | Z. Hampel-Arias | A. Lara | W. H. Lee | O. Martinez | J. Martínez-Castro | P. Miranda-Romagnoli | E. Moreno | M. Newbold | R. Noriega-Papaqui | R. Pelayo | J. Pretz | E. Pérez-Pérez | C. Rivière | D. Rosa-González | H. Salazar | M. Schneider | I. Torres | T. Weisgarber | I. Wisher | H. Zhou | J. Ryan | N. Bautista-Elivar | P. Younk | P. Huentemeyer | H. Martinez | B. Baughman | J. González | R. Hernández | E. Belmont | M. Rosales | R. Caballero-Lopez | L. Díaz-Cruz | S. F.E. | A. Galindo | M. Gussert | P. Karn | M. Longo | E. Torres | T. Oceguera-Becerra | S. Silich | K. S. Woodle | J. Goodman | J. Matthews
[1] Yang Bai,et al. Geometric compatibility of IceCube TeV-PeV neutrino excess and its galactic dark matter origin , 2013, 1311.5864.
[2] M. Kaplinghat,et al. Astrophysical and dark matter interpretations of extended gamma-ray emission from the Galactic Center , 2014, 1402.4090.
[3] Stanford,et al. The flattening of the concentration–mass relation towards low halo masses and its implications for the annihilation signal boost , 2013, 1312.1729.
[4] J. P. Rodrigues,et al. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector , 2013, Science.
[5] Danzengluobu,et al. Medium scale anisotropy in the TeV cosmic ray flux observed by ARGO-YBJ , 2013, 1309.6182.
[6] P. Serpico,et al. Are IceCube neutrinos unveiling PeV-scale decaying dark matter? , 2013, 1308.1105.
[7] P. Serpico,et al. Bremsstrahlung gamma rays from light dark matter , 2013, 1307.7152.
[8] J. P. Harding. The TeV Cosmic-Ray Anisotropy from Local Dark Matter Annihilation , 2013, 1307.6537.
[9] Spain,et al. Optimized DarkMatter Searches in Deep Observations of Segue 1 with MAGIC , 2013 .
[10] William H. Lee,et al. Sensitivity of the high altitude water Cherenkov detector to sources of multi-TeV gamma rays , 2013, 1306.5800.
[11] L. Fortson,et al. Search for Dark Matter Subhalos in the High-Energy Gamma-ray Band with Fermi and the Cherenkov Telescope Array , 2013, 1305.0312.
[12] E. Kirby,et al. SEGUE 2: THE LEAST MASSIVE GALAXY , 2013, 1304.6080.
[13] P. O. Hulth,et al. First observation of PeV-energy neutrinos with IceCube. , 2013, Physical review letters.
[14] D. Hooper,et al. Dark Matter and Pulsar Origins of the Rising Cosmic Ray Positron Fraction in Light of New Data From AMS , 2013, 1304.1840.
[15] P. Lipari,et al. First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5350 GeV , 2013 .
[16] J. Cembranos,et al. Spectral study of the HESS J1745-290 gamma-ray source as dark matter signal , 2013, 1302.6871.
[17] P. O. Hulth,et al. Observation of cosmic-ray anisotropy with the icetop air shower array , 2012, 1210.5278.
[18] A. Kounine,et al. The Alpha Magnetic Spectrometer on the International Space Station , 2012 .
[19] J. Beacom,et al. Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation , 2012, 1204.3622.
[20] T. Weekes,et al. VERITAS deep observations of the dwarf spheroidal galaxy Segue 1 , 2012, 1202.2144.
[21] J. P. Harding,et al. Constraints on WIMP and Sommerfeld-enhanced dark matter annihilation from HESS observations of the galactic center , 2011, 1110.6151.
[22] T Glanzman,et al. Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope. , 2011, Physical review letters.
[23] J. P. Harding,et al. Current and Future Constraints on Dark Matter from Prompt and Inverse-Compton Photon Emission in the Isotropic Diffuse Gamma-ray Background , 2010, 1011.5090.
[24] M. V. Fernandes,et al. SEARCH FOR DARK MATTER ANNIHILATION SIGNALS FROM THE FORNAX GALAXY CLUSTER WITH H . , 2012 .
[25] A. Geringer-Sameth,et al. Exclusion of canonical weakly interacting massive particles by joint analysis of Milky Way dwarf galaxies with data from the Fermi Gamma-Ray Space Telescope. , 2011, Physical review letters.
[26] D. Hooper,et al. On The Origin Of The Gamma Rays From The Galactic Center , 2011, 1110.0006.
[27] T Glanzman,et al. Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. , 2011, Physical review letters.
[28] A. R. Bazer-Bachi,et al. Search for a dark matter annihilation signal from the galactic center halo with H.E.S.S. , 2011, Physical review letters.
[29] P. Munar-Adrover,et al. Searches for dark matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope , 2011, 1103.0477.
[30] S. Dodelson,et al. Robust approach to constraining dark matter properties with gamma-ray data , 2011, 1103.5779.
[31] N. B. Conklin,et al. COSMIC-RAY PROTON AND HELIUM SPECTRA FROM THE FIRST CREAM FLIGHT , 2011, 1102.2575.
[32] A. Quirrenbach,et al. H.E.S.S. constraints on dark matter annihilations towards the sculptor and carina dwarf galaxies , 2010, 1012.5602.
[33] Gianfranco Bertone,et al. Implications of High-Resolution Simulations on Indirect Dark Matter Searches , 2009, 0908.0195.
[34] T. Jeltema,et al. Constraints on decaying dark matter from Fermi observations of nearby galaxies and clusters , 2010, 1009.5988.
[35] R. Guenette,et al. VERITAS SEARCH FOR VHE GAMMA-RAY EMISSION FROM DWARF SPHEROIDAL GALAXIES , 2010, 1006.5955.
[36] Jonathan L. Feng,et al. Sommerfeld enhancements for thermal relic dark matter , 2010, 1005.4678.
[37] Yasushi Fukazawa,et al. OBSERVATIONS OF MILKY WAY DWARF SPHEROIDAL GALAXIES WITH THE FERMI-LARGE AREA TELESCOPE DETECTOR AND CONSTRAINTS ON DARK MATTER MODELS , 2010 .
[38] Jonathan L. Feng. Dark Matter Candidates from Particle Physics and Methods of Detection , 2010, 1003.0904.
[39] C. Kilic,et al. Conservative constraints on dark matter from the Fermi-LAT isotropic diffuse gamma-ray background spectrum , 2010, 1002.3820.
[40] M. Kamionkowski,et al. Galactic substructure and dark-matter annihilation in the Milky Way halo , 2010, 1001.3144.
[41] P. Panci,et al. Diffuse gamma ray constraints on annihilating or decaying Dark Matter after Fermi , 2009, 0912.0663.
[42] D. Berley,et al. ERRATUM: “MILAGRO OBSERVATIONS OF MULTI-TeV EMISSION FROM GALACTIC SOURCES IN THE FERMI BRIGHT SOURCE LIST” (2009, ApJ, 700, L127) , 2009 .
[43] T. Jeltema,et al. Extragalactic Inverse Compton Light from Dark Matter Annihilation and the Pamela Positron Excess , 2009, 0906.0001.
[44] P. Panci,et al. Inverse Compton constraints on the Dark Matter e+e- excesses , 2009, 0904.3830.
[45] D. Berley,et al. MILAGRO OBSERVATIONS OF MULTI-TeV EMISSION FROM GALACTIC SOURCES IN THE FERMI BRIGHT SOURCE LIST , 2009, 0904.1018.
[46] G. C. Barbarino,et al. An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV , 2009, Nature.
[47] Joseph Silk,et al. Can the WIMP annihilation boost factor be boosted by the Sommerfeld enhancement , 2008, 0812.0360.
[48] D. Finkbeiner,et al. The PAMELA Positron Excess from Annihilations into a Light Boson , 2008, 0810.5344.
[49] Joachim Stadel,et al. Quantifying the heart of darkness with GHALO – a multibillion particle simulation of a galactic halo , 2008, 0808.2981.
[50] D. Finkbeiner,et al. The Case for a 700+ GeV WIMP: Cosmic Ray Spectra from ATIC and PAMELA , 2008 .
[51] Carlos S. Frenk,et al. The diversity and similarity of simulated cold dark matter haloes , 2008, 0810.1522.
[52] A. Strumia,et al. Minimal Dark Matter predictions and the PAMELA positron excess , 2008, 0808.3867.
[53] D. Berley,et al. Discovery of localized regions of excess 10-TeV cosmic rays. , 2008, Physical review letters.
[54] R. Ellsworth,et al. Photocathode-Uniformity Tests of the Hamamatsu R5912 Photomultiplier Tubes Used in the Milagro Experiment , 2007, 0711.1910.
[55] F. Cerutti,et al. The FLUKA code: Description and benchmarking , 2007 .
[56] V. Vasileiou. Monte Carlo Simulation of the Milagro Gamma-ray Observatory , 2007 .
[57] S. Incerti,et al. Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.
[58] A. Ferrari,et al. FLUKA: A Multi-Particle Transport Code , 2005 .
[59] S. Profumo. TeV γ-rays and the largest masses and annihilation cross sections of neutralino dark matter , 2005, astro-ph/0508628.
[60] TeV γ-radiation from Dark Matter annihilation in the Galactic center , 2005 .
[61] A. Babul,et al. Investigating the Andromeda stream — I. Simple analytic bulge—disc—halo model for M31 , 2005, astro-ph/0501240.
[62] Gamma rays from Kaluza-Klein dark matter. , 2004, Physical review letters.
[63] D. Horns. TeV $\gamma$-radiation from Dark Matter annihilation in the Galactic center , 2004, astro-ph/0408192.
[64] Frank W. Samuelson,et al. TeV Gamma-Ray Survey of the Northern Hemisphere Sky Using the Milagro Observatory , 2004 .
[65] S. Mrenna,et al. Pythia 6.3 physics and manual , 2003, hep-ph/0308153.
[66] L. Hui. Unitarity bounds and the cuspy halo problem. , 2001, Physical review letters.
[67] J. Knapp,et al. CORSIKA: A Monte Carlo code to simulate extensive air showers , 1998 .
[68] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[69] M. Kamionkowski,et al. Unitarity limits on the mass and radius of dark-matter particles. , 1990, Physical review letters.