Differential Dynamic Logic dℒ

Hybrid systems are models for complex physical systems and are defined as dynamical systems with interacting discrete transitions and continuous evolutions along differential equations. With the goal of developing a theoretical and practical foundation for deductive verification of hybrid systems, we introduce a dynamic logic for hybrid programs, which is a program notation for hybrid systems. As a verification technique that is suitable for automation, we introduce a free-variable proof calculus with a novel combination of real-valued free variables and Skolemisation for lifting quantifier elimination for real arithmetic to dynamic logic. The calculus is compositional, i.e., it reduces properties of hybrid programs to properties of their parts. Our main result proves that this calculus axiomatises the transition behaviour of hybrid systems completely relative to differential equations. In a study with cooperating traffic agents of the European Train Control System, we further show that our calculus is well suited for verifying realistic hybrid systems with parametric system dynamics.

[1]  Cesare Tinelli,et al.  Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing , 2003, Journal of Automated Reasoning.

[2]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[3]  Vaughan R. Pratt,et al.  SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC , 1976, FOCS 1976.

[4]  Zohar Manna,et al.  Proving termination with multiset orderings , 1979, CACM.

[5]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[6]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[7]  L. Dries,et al.  On the real exponential field with restricted analytic functions , 1995 .

[8]  T. Henzinger The theory of hybrid automata , 1996, LICS 1996.

[9]  Hirokazu Anai,et al.  Reach Set Computations Using Real Quantifier Elimination , 2001, HSCC.

[10]  Edmund M. Clarke,et al.  The Image Computation Problem in Hybrid Systems Model Checking , 2007, HSCC.

[11]  Michał Morayne On differentiability of Peano type functions , 1987 .

[12]  Bruce H. Krogh,et al.  Computational techniques for hybrid system verification , 2003, IEEE Trans. Autom. Control..

[13]  Lou van den Dries,et al.  THE REAL FIELD WITH CONVERGENT GENERALIZED POWER SERIES , 1998 .

[14]  André Platzer,et al.  Differential Dynamic Logic for Verifying Parametric Hybrid Systems , 2007, TABLEAUX.

[15]  Stephen A. Cook,et al.  Soundness and Completeness of an Axiom System for Program Verification , 1978, SIAM J. Comput..

[16]  Dexter Kozen,et al.  Kleene algebra with tests , 1997, TOPL.

[17]  Volker Weispfenning,et al.  Deciding polynomial-exponential problems , 2008, ISSAC '08.

[18]  Goran Frehse PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech , 2005, HSCC.

[19]  Christopher L. Miller Expansions of the Real Field with Power Functions , 1994, Ann. Pure Appl. Log..

[20]  P. Hartman Ordinary Differential Equations , 1965 .

[21]  Ernst-Rüdiger Olderog,et al.  Automating Verification of Cooperation, Control, and Design in Traffic Applications , 2007, Formal Methods and Hybrid Real-Time Systems.

[22]  K. S. Sibirsky Introduction to Topological Dynamics , 2011 .

[23]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[24]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[25]  Claude Kirchner,et al.  Theorem Proving Modulo , 2003, Journal of Automated Reasoning.

[26]  Vaughan R. Pratt,et al.  Semantical consideration on floyo-hoare logic , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[27]  A. Tarski,et al.  Sur les ensembles définissables de nombres réels , 1931 .

[28]  Bernhard Beckert,et al.  Dynamic Logic with Non-rigid Functions , 2006, IJCAR.

[29]  Hardi Hungar,et al.  Verification of cooperating traffic agents , 2006 .

[30]  Daniel S. Graça,et al.  Computability with polynomial differential equations , 2008, Adv. Appl. Math..

[31]  Gerardo Lafferriere,et al.  A New Class of Decidable Hybrid Systems , 1999, HSCC.

[32]  Michael S. Branicky,et al.  Studies in hybrid systems: modeling, analysis, and control , 1996 .

[33]  C. A. R. Hoare,et al.  An axiomatic basis for computer programming , 1969, CACM.

[34]  Carla Piazza,et al.  Algorithmic Algebraic Model Checking II: Decidability of Semi-algebraic Model Checking and Its Applications to Systems Biology , 2005, ATVA.

[35]  Ricardo Bianconi,et al.  Undefinability results in o-minimal expansions of the real numbers , 2005, Ann. Pure Appl. Log..

[36]  Michael S. Branicky,et al.  Universal Computation and Other Capabilities of Hybrid and Continuous Dynamical Systems , 1995, Theor. Comput. Sci..

[37]  Patrick Blackburn,et al.  Internalizing labelled deduction , 2000, J. Log. Comput..

[38]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[39]  Peter H. Schmitt,et al.  The liberalized δ-rule in free variable semantic tableaux , 2004, Journal of Automated Reasoning.

[40]  M. Egerstedt,et al.  On the regularization of Zeno hybrid automata , 1999 .

[41]  Ricardo Bianconi Nondefiniability Results for Expansions of the Field of Real Numbers by the Exponential Function and by the Restricted Sine Function , 1997, J. Symb. Log..

[42]  Martin Fränzle,et al.  Analysis of Hybrid Systems: An Ounce of Realism Can Save an Infinity of States , 1999, CSL.

[43]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[44]  Martin Giese,et al.  Incremental Closure of Free Variable Tableaux , 2001, IJCAR.

[45]  Christopher Strachey,et al.  Toward a mathematical semantics for computer languages , 1971 .

[46]  Bernhard Beckert Equality and Other Theories , 1999 .

[47]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[48]  Antoine Girard,et al.  Reachability Analysis of Nonlinear Systems Using Conservative Approximation , 2003, HSCC.

[49]  D. Gabbay,et al.  Handbook of tableau methods , 1999 .

[50]  David Harel,et al.  First-Order Dynamic Logic , 1979, Lecture Notes in Computer Science.