Benzene derivatives adsorbed to the Ag(111) surface: Binding sites and electronic structure.

Dispersion corrected Density Functional Theory calculations were employed to study the adsorption of benzenes derivatized with functional groups encompassing a large region of the activated/deactivated spectrum to the Ag(111) surface. Benzenes substituted with weak activating or deactivating groups, such as methyl and fluoro, do not have a strong preference for adsorbing to a particular site on the substrate, with the corrugations in the potential energy surface being similar to those of benzene. Strong activating (N(CH3)2) and deactivating (NO2) groups, on the other hand, possess a distinct site preference. The nitrogen in the former prefers to lie above a silver atom (top site), but in the latter a hollow hexagonal-closed-packed (Hhcp) site of the Ag(111) surface is favored instead. Benzenes derivatized with classic activating groups donate electron density from their highest occupied molecular orbital to the surface, and those functionalized with deactivating groups withdraw electron density from the surface into orbitals that are unoccupied in the gas phase. For benzenes functionalized with two substituents, the groups that are strongly activating or deactivating control the site preference and the other groups assume sites that are, to a large degree, dictated by their positions on the benzene ring. The relative stabilities of the ortho, meta, and para positional isomers of disubstituted benzenes can, in some cases, be modified by adsorption to the surface.

[1]  A. Tkatchenko,et al.  Van der Waals interactions determine selectivity in catalysis by metallic gold. , 2014, Journal of the American Chemical Society.

[2]  Cyrile Deranlot,et al.  Interdependency of Subsurface Carbon Distribution and Graphene–Catalyst Interaction , 2014, Journal of the American Chemical Society.

[3]  J. Polanyi,et al.  How adsorbate alignment leads to selective reaction. , 2014, ACS nano.

[4]  D. Donadio,et al.  Tuning the Adsorption of Aromatic Molecules on Platinum via Halogenation , 2014 .

[5]  A. Tkatchenko,et al.  Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces. , 2014, The Journal of chemical physics.

[6]  F. Zaera,et al.  Increase in Activity and Selectivity in Catalysis via Surface Modification with Self-Assembled Monolayers , 2014 .

[7]  A. Tkatchenko,et al.  Molecular switches from benzene derivatives adsorbed on metal surfaces , 2013, Nature Communications.

[8]  A. Kara,et al.  Trends in Adsorption Characteristics of Organic Molecules on Transition Metal Surfaces: Role of Surface Chemistry and Van Der Waals Interactions , 2013 .

[9]  A. Enders,et al.  Rhodizonic Acid on Noble Metals: Surface Reactivity and Coordination Chemistry , 2013 .

[10]  A. Enders,et al.  Coverage-Dependent Interactions at the Organics–Metal Interface: Quinonoid Zwitterions on Au(111) , 2013 .

[11]  A. Kara,et al.  Effect of van der Waals Interactions on the Adsorption of Olympicene Radical on Cu(111): Characteristics of Weak Physisorption versus Strong Chemisorption , 2013 .

[12]  A. Enders,et al.  Proton transfer in surface-stabilized chiral motifs of croconic acid , 2013 .

[13]  M. Sullivan,et al.  Adsorption studies of C6H6 on Cu (111), Ag (111), and Au (111) within dispersion corrected density functional theory. , 2012, The Journal of chemical physics.

[14]  Florian Janetzko,et al.  Implementation of empirical dispersion corrections to density functional theory for periodic systems , 2012, J. Comput. Chem..

[15]  J. Klimeš,et al.  Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. , 2012, The Journal of chemical physics.

[16]  W. Liu,et al.  Benzene adsorbed on metals: Concerted effect of covalency and van der Waals bonding , 2012, 1209.4345.

[17]  Steven E. Wheeler,et al.  Physical Nature of Substituent Effects in XH/π Interactions. , 2012, Journal of chemical theory and computation.

[18]  Marcus D. Hanwell,et al.  Avogadro: an advanced semantic chemical editor, visualization, and analysis platform , 2012, Journal of Cheminformatics.

[19]  E. Zurek,et al.  Substituted Benzene Derivatives on the Cu(111) Surface , 2012 .

[20]  Alexandre Tkatchenko,et al.  Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems. , 2012, Physical review letters.

[21]  Miguel Fuentes-Cabrera,et al.  Supramolecular self-assembly of π-conjugated hydrocarbons via 2D cooperative CH/π interaction. , 2012, ACS nano.

[22]  Georg Kresse,et al.  Graphene on Ni(111): Strong interaction and weak adsorption , 2011 .

[23]  A. Arnau,et al.  Role of deprotonation and Cu adatom migration in determining the reaction pathways of oxalic acid adsorption on Cu(111) , 2011 .

[24]  P. Ordejón,et al.  Modulation of surface charge transfer through competing long-range repulsive versus short-range attractive interactions , 2011 .

[25]  W. Xu,et al.  Homochiral xanthine quintet networks self-assembled on Au(111) surfaces. , 2011, ACS nano.

[26]  Kalpataru Das,et al.  Extended two-dimensional metal-organic frameworks based on thiolate-copper coordination bonds. , 2011, Journal of the American Chemical Society.

[27]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[28]  Norbert Koch,et al.  Electronic Properties of Organic-Based Interfaces , 2010 .

[29]  A. Enders,et al.  Self-Assembly and Properties of NonmetalatedTetraphenyl-Porphyrin on Metal Substrates , 2010 .

[30]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[31]  Kyuho Lee,et al.  Higher-accuracy van der Waals density functional , 2010, 1003.5255.

[32]  K. Reuter,et al.  Azobenzene versus 3,3',5,5'-tetra-tert-butyl-azobenzene (TBA) at Au(111): characterizing the role of spacer groups. , 2010, Physical chemistry chemical physics : PCCP.

[33]  L. Bartels Tailoring molecular layers at metal surfaces. , 2010, Nature chemistry.

[34]  K. Müllen,et al.  Repulsion between molecules on a metal: Monolayers and submonolayers of hexa-peri-hexabenzocoronene on Au(111) , 2010 .

[35]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[36]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[37]  C. Kumpf,et al.  Tuning intermolecular interaction in long-range-ordered submonolayer organic films , 2009 .

[38]  C. Sherrill,et al.  Substituent effects in parallel-displaced pi-pi interactions. , 2008, Physical chemistry chemical physics : PCCP.

[39]  A. Arnau,et al.  Metal-organic honeycomb nanomeshes with tunable cavity size. , 2007, Nano letters.

[40]  Volker Staemmler,et al.  Adsorption of benzene on coinage metals: a theoretical analysis using wavefunction-based methods. , 2007, The journal of physical chemistry. A.

[41]  Stefano de Gironcoli,et al.  Hydrogen and coordination bonding supramolecular structures of trimesic acid on Cu(110). , 2007, The journal of physical chemistry. A.

[42]  M. Persson,et al.  Nano-architectures by covalent assembly of molecular building blocks. , 2007, Nature nanotechnology.

[43]  Arrigo Calzolari,et al.  Mixing of electronic states in pentacene adsorption on copper. , 2007, Physical review letters.

[44]  K. Kern,et al.  Ionic hydrogen bonds controlling two-dimensional supramolecular systems at a metal surface. , 2007, Chemistry.

[45]  Stephen C. Jensen,et al.  Dipole-driven ferroelectric assembly of styrene on Au{111}. , 2007, Journal of the American Chemical Society.

[46]  J. Barth,et al.  Molecular architectonic on metal surfaces. , 2007, Annual review of physical chemistry.

[47]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[48]  C. D. Keefe,et al.  The dipole moment derivatives of gaseous benzene: A comparison of experimental and ab initio values , 2006 .

[49]  L. Bartels,et al.  A Homomolecular Porous Network at a Cu(111) Surface , 2006, Science.

[50]  I. Persson,et al.  Coordination chemistry of the solvated silver(I) ion in the oxygen donor solvents water, dimethyl sulfoxide, and N,N'-dimethylpropyleneurea. , 2006, Inorganic chemistry.

[51]  Hai-Lung Dai,et al.  Adsorption energies, inter-adsorbate interactions, and the two binding sites within monolayer benzene on Ag(111). , 2006, The journal of physical chemistry. B.

[52]  L. Perdigão,et al.  Bimolecular networks and supramolecular traps on Au(111). , 2006, The journal of physical chemistry. B.

[53]  Ante Bilić,et al.  Adsorption of Benzene on Copper, Silver, and Gold Surfaces. , 2006, Journal of chemical theory and computation.

[54]  J. Ihm,et al.  Conformational molecular switch of the azobenzene molecule: a scanning tunneling microscopy study. , 2006, Physical review letters.

[55]  K. Kern,et al.  Engineering atomic and molecular nanostructures at surfaces , 2005, Nature.

[56]  M. Dion,et al.  Erratum: Van der Waals Density Functional for General Geometries [Phys. Rev. Lett. 92, 246401 (2004)] , 2005 .

[57]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[58]  Paul S. Weiss,et al.  Patterning self-assembled monolayers , 2004 .

[59]  Stephen R. Forrest,et al.  The path to ubiquitous and low-cost organic electronic appliances on plastic , 2004, Nature.

[60]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[61]  K. Kelly,et al.  Substrate-mediated interactions and intermolecular forces between molecules adsorbed on surfaces. , 2003, Accounts of chemical research.

[62]  Anton Kokalj,et al.  Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale , 2003 .

[63]  B. Parkinson,et al.  Scanning tunneling microscopy study of the coverage-dependent structures of pentacene on Au(111) , 2003 .

[64]  K. Rieder,et al.  Coexisting superstructures of iodobenzene on Cu(1 1 1) near saturation coverage , 2003 .

[65]  Mark Saeys,et al.  Density Functional Study of Benzene Adsorption on Pt(111) , 2002 .

[66]  Klaus Kern,et al.  Supramolecular Assemblies of Trimesic Acid on a Cu(100) Surface , 2002 .

[67]  A. Kahn,et al.  Electronic polarization at surfaces and thin films of organic molecular crystals: PTCDA , 2002, cond-mat/0205351.

[68]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[69]  H. Ågren,et al.  Direct experimental measurement of donation/back-donation in unsaturated hydrocarbon bonding to metals , 2000 .

[70]  R. Car,et al.  Two-Dimensional Self-Assembly of Supramolecular Clusters and Chains , 1999 .

[71]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[72]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[73]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[74]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[75]  X. Zhou,et al.  INTERACTIONS OF UV PHOTONS AND LOW ENERGY ELECTRONS WITH CHEMISORBED BENZENE ON AG(111) , 1990 .

[76]  E. Koch,et al.  The electronic structure of benzene adsorbed on Ag(111) studied by angle resolved photoemission , 1990 .

[77]  L. A. Duncanson,et al.  586. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes , 1953 .