Membrane organisation of photosystem I complexes in the most abundant phototroph on Earth

[1]  Juergen Weichselgartner,et al.  Resolving the Paradox , 2004, Entrepreneurs and SMEs in Rwanda.

[2]  The UniProt Consortium,et al.  UniProt: a worldwide hub of protein knowledge , 2018, Nucleic Acids Res..

[3]  D. Campbell,et al.  Strain specific differences in rates of Photosystem II repair in picocyanobacteria correlate to differences in FtsH protein levels and isoform expression patterns , 2018, PloS one.

[4]  N. Nelson,et al.  Structure and function of wild-type and subunit-depleted photosystem I in Synechocystis. , 2018, Biochimica et biophysica acta. Bioenergetics.

[5]  T. Ikegami,et al.  X-ray structure of an asymmetrical trimeric ferredoxin–photosystem I complex , 2018, Nature Plants.

[6]  Matthew P. Johnson,et al.  Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer , 2018, Nature Plants.

[7]  Matthew P. Johnson,et al.  Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer , 2018, Nature Plants.

[8]  C. Mullineaux,et al.  Dissecting the Native Architecture and Dynamics of Cyanobacterial Photosynthetic Machinery , 2017, Molecular plant.

[9]  R. Beynon,et al.  Quantitative Proteomics Shows Extensive Remodeling Induced by Nitrogen Limitation in Prochlorococcus marinus SS120 , 2017, mSystems.

[10]  K. Schulten,et al.  Lateral Segregation of Photosystem I in Cyanobacterial Thylakoids[CC-BY] , 2017, Plant Cell.

[11]  C. Hunter,et al.  Direct Imaging of Protein Organization in an Intact Bacterial Organelle Using High-Resolution Atomic Force Microscopy , 2016, ACS nano.

[12]  R. Sadygov,et al.  Proteome Dynamics Reveals Pro-Inflammatory Remodeling of Plasma Proteome in a Mouse Model of NAFLD. , 2016, Journal of proteome research.

[13]  Marco Y. Hein,et al.  The Perseus computational platform for comprehensive analysis of (prote)omics data , 2016, Nature Methods.

[14]  C. Hunter,et al.  Biosynthesis of Chlorophyll a in a Purple Bacterial Phototroph and Assembly into a Plant Chlorophyll-Protein Complex. , 2016, ACS synthetic biology.

[15]  F. Prinz,et al.  The Use of Contact Mode Atomic Force Microscopy in Aqueous Medium for Structural Analysis of Spinach Photosynthetic Complexes1[OPEN] , 2015, Plant Physiology.

[16]  K. Niyogi,et al.  Functional Implications of Photosystem II Crystal Formation in Photosynthetic Membranes* , 2015, The Journal of Biological Chemistry.

[17]  W. Baumeister,et al.  Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography , 2015, eLife.

[18]  S. Chisholm,et al.  Prochlorococcus: the structure and function of collective diversity , 2014, Nature Reviews Microbiology.

[19]  B. Monsarrat,et al.  Comparison of label-free quantification methods for the determination of protein complexes subunits stoichiometry , 2014 .

[20]  Anna R. Schneider,et al.  Atomic Force Microscopy of Photosystem II and Its Unit Cell Clustering Quantitatively Delineate the Mesoscale Variability in Arabidopsis Thylakoids , 2014, PloS one.

[21]  Matthew P. Johnson,et al.  Nanodomains of Cytochrome b6f and Photosystem II Complexes in Spinach Grana Thylakoid Membranes[W][OPEN] , 2014, Plant Cell.

[22]  Jasper A. Vrugt,et al.  Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus , 2013, Proceedings of the National Academy of Sciences.

[23]  Simon Scheuring,et al.  Investigation of photosynthetic membrane structure using atomic force microscopy. , 2013, Trends in plant science.

[24]  Maureen L. Coleman,et al.  Transcriptome and Proteome Dynamics of a Light-Dark Synchronized Bacterial Cell Cycle , 2012, PloS one.

[25]  D. Nečas,et al.  Gwyddion: an open-source software for SPM data analysis , 2012 .

[26]  G. Wuite,et al.  Jumping Mode Atomic Force Microscopy on Grana Membranes from Spinach* , 2011, The Journal of Biological Chemistry.

[27]  Keisuke Kawakami,et al.  Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å , 2011, Nature.

[28]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[29]  S. Chisholm,et al.  Temporal dynamics of Prochlorococcus ecotypes in the Atlantic and Pacific oceans , 2010, The ISME Journal.

[30]  F. Partensky,et al.  Prochlorococcus: advantages and limits of minimalism. , 2010, Annual review of marine science.

[31]  M. Huston,et al.  The global distribution of net primary production: resolving the paradox , 2009 .

[32]  S. Chisholm,et al.  Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. , 2009, Environmental microbiology.

[33]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[34]  J. Nield,et al.  Probing the organization of photosystem II in photosynthetic membranes by atomic force microscopy. , 2008, Biochemistry.

[35]  D. Vaulot,et al.  Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. , 2007, Environmental microbiology.

[36]  C. Mannella,et al.  Cryo-Electron Tomography Reveals the Comparative Three-Dimensional Architecture of Prochlorococcus, a Globally Important Marine Cyanobacterium , 2007, Journal of bacteriology.

[37]  Min Chen,et al.  Photosynthetic Apparatus of Antenna-reaction Centres Supercomplexes in Oxyphotobacteria: Insight through Significance of Pcb/IsiA Proteins , 2005, Photosynthesis Research.

[38]  Klaus Schulten,et al.  Excitation migration in trimeric cyanobacterial photosystem I. , 2004, The Journal of chemical physics.

[39]  D. Bruce,et al.  Regulation of excitation energy transfer in organisms containing phycobilins , 1989, Photosynthesis Research.

[40]  J. Barber,et al.  Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem , 2003, Nature.

[41]  D. Scanlan,et al.  Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. , 2002, FEMS microbiology ecology.

[42]  S. Chisholm,et al.  Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. , 2002, Trends in microbiology.

[43]  Sallie W. Chisholm,et al.  Resolution of Prochlorococcus and Synechococcus Ecotypes by Using 16S-23S Ribosomal DNA Internal Transcribed Spacer Sequences , 2002, Applied and Environmental Microbiology.

[44]  J. Barber,et al.  Oxyphotobacteria: Antenna ring around photosystem I , 2001, Nature.

[45]  E. Boekema,et al.  A giant chlorophyll–protein complex induced by iron deficiency in cyanobacteria , 2001, Nature.

[46]  J. Barber,et al.  Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria , 2001, Nature.

[47]  Petra Fromme,et al.  Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution , 2001, Nature.

[48]  D. Scanlan,et al.  Prochlorococcus marinus Chisholm et al. 1992 subsp. pastoris subsp. nov. strain PCC 9511, the first axenic chlorophyll a2/b2-containing cyanobacterium (Oxyphotobacteria). , 2000, International journal of systematic and evolutionary microbiology.

[49]  J. García-Plazaola,et al.  A rapid high‐performance liquid chromatography method to measure lipophilic antioxidants in stressed plants: simultaneous determination of carotenoids and tocopherols , 1999 .

[50]  D. Scanlan,et al.  Niche-Partitioning of ProchlorococcusPopulations in a Stratified Water Column in the Eastern North Atlantic Ocean , 1999, Applied and Environmental Microbiology.

[51]  Lisa R. Moore,et al.  Photophysiology of the marine cyanobacterium Prochlorococcus: Ecotypic differences among cultured isolates , 1999 .

[52]  D. Vaulot,et al.  Prochlorococcus, a Marine Photosynthetic Prokaryote of Global Significance , 1999, Microbiology and Molecular Biology Reviews.

[53]  D. Scanlan,et al.  Niche-partitioning of Prochlorococcus populations in a stratified water column in the eastern North Atlantic Ocean. , 1999, Applied and environmental microbiology.

[54]  B. Palenik,et al.  Niche adaptation in ocean cyanobacteria , 1998, Nature.

[55]  Lisa R. Moore,et al.  Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes , 1998, Nature.

[56]  S. Chisholm,et al.  Rapid Diversification of Marine Picophytoplankton with Dissimilar Light-Harvesting Structures Inferred from Sequences of Prochlorococcus and Synechococcus (Cyanobacteria) , 1998, Journal of Molecular Evolution.

[57]  R. Aebersold,et al.  Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[58]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[59]  Sallie W. Chisholm,et al.  Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties , 1995 .

[60]  J. Kirk Light and photosynthesis in aquatic ecosystems: Index to organisms , 1994 .

[61]  D. Vaulot,et al.  Photoacclimation of Prochlorococcus sp. (Prochlorophyta) Strains Isolated from the North Atlantic and the Mediterranean Sea , 1993, Plant physiology.

[62]  D. Repeta,et al.  The pigments of Prochlorococcus marinus: The presence of divinylchlorophyll a and b in a marine procaryote , 1992 .

[63]  S. Chisholm,et al.  Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation , 1992, Nature.

[64]  R. Haselkorn,et al.  Multiple evolutionary origins of prochlorophytes, the chlorophyllb-containing prokaryotes , 1992, Nature.

[65]  J. Anderson,et al.  Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. , 1980, Biochimica et biophysica acta.

[66]  R. Bernlohr,et al.  A new spectrophotometric assay for protein in cell extracts. , 1977, Analytical biochemistry.

[67]  G. F. Humphrey,et al.  New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton , 1975 .