Variance analysis of linear SIMO models with spatially correlated noise

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  Michel Verhaegen,et al.  Output-Error Identification of Large Scale 1D-Spatially Varying Interconnected Systems , 2015, IEEE Transactions on Automatic Control.

[3]  Giulio Bottegal,et al.  On the variance of identified SIMO systems with spatially correlated output noise , 2014, 53rd IEEE Conference on Decision and Control.

[4]  Håkan Hjalmarsson,et al.  Variance analysis of identified linear MISO models having spatially correlated inputs, with application to parallel Hammerstein models , 2014, Autom..

[5]  Aleksandar Haber,et al.  Subspace Identification of Large-Scale Interconnected Systems , 2013, IEEE Transactions on Automatic Control.

[6]  Arne Dankers,et al.  Errors-in-variables identification in dynamic networks , 2014 .

[7]  Bilal Gunes,et al.  A variance reduction technique for identification in dynamic networks , 2014 .

[8]  Arne G. Dankers,et al.  Predictor input selection for direct identification in dynamic networks , 2013, 52nd IEEE Conference on Decision and Control.

[9]  Håkan Hjalmarsson,et al.  A geometric approach to variance analysis of cascaded systems , 2013, 52nd IEEE Conference on Decision and Control.

[10]  Xavier Bombois,et al.  Identification of dynamic models in complex networks with prediction error methods - Basic methods for consistent module estimates , 2013, Autom..

[11]  Xavier Bombois,et al.  Predictor input selection for two stage identification in dynamic networks , 2013, 2013 European Control Conference (ECC).

[12]  Biao Huang,et al.  System Identification , 2000, Control Theory for Physicists.

[13]  T. Koski,et al.  A Review of Bayesian Networks and Structure Learning , 2012 .

[14]  Alessandro Chiuso,et al.  A Bayesian approach to sparse dynamic network identification , 2012, Autom..

[15]  C. Papadimitriou,et al.  The effect of prediction error correlation on optimal sensor placement in structural dynamics , 2012 .

[16]  Murti V. Salapaka,et al.  Relations between structure and estimators in networks of dynamical systems , 2011, IEEE Conference on Decision and Control and European Control Conference.

[17]  H. Werner,et al.  Consistent identification of spatially interconnected systems , 2011, Proceedings of the 2011 American Control Conference.

[18]  Maria Q. Feng,et al.  System identification of a building from multiple seismic records , 2011 .

[19]  Håkan Hjalmarsson,et al.  A Geometric Approach to Variance Analysis in System Identification , 2011, IEEE Transactions on Automatic Control.

[20]  B. Wahlberg,et al.  On Identification of Parallel Cascade Serial Systems , 2011 .

[21]  Henrik Ohlsson,et al.  Four Encounters with System Identification , 2011, Eur. J. Control.

[22]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[23]  Bo Wahlberg,et al.  Variance results for identification of cascade systems , 2009, Autom..

[24]  Jonas Mårtensson,et al.  Geometric analysis of stochastic model errors in system identification , 2007 .

[25]  Håkan Hjalmarsson,et al.  Least-squares estimation of a class of frequency functions: A finite sample variance expression , 2006, Autom..

[26]  Michel Gevers,et al.  Identification of multi-input systems: variance analysis and input design issues , 2006, Autom..

[27]  H. Harry Asada,et al.  Laguerre-model blind system identification: cardiovascular dynamics estimated from multiple peripheral circulatory signals , 2005, IEEE Transactions on Biomedical Engineering.

[28]  Håkan Hjalmarsson,et al.  Analysis of the variability of joint input-output estimation methods , 2005, Autom..

[29]  Håkan Hjalmarsson,et al.  On the frequency domain accuracy of closed-loop estimates , 2005, Autom..

[30]  Håkan Hjalmarsson,et al.  Variance error quantifications that are exact for finite-model order , 2004, IEEE Transactions on Automatic Control.

[31]  Marc Moonen,et al.  GSVD-based optimal filtering for single and multimicrophone speech enhancement , 2002, IEEE Trans. Signal Process..

[32]  Yucai Zhu,et al.  Multivariable System Identification For Process Control , 2001 .

[33]  Håkan Hjalmarsson,et al.  The fundamental role of general orthonormal bases in system identification , 1999, IEEE Trans. Autom. Control..

[34]  É. Chaumette,et al.  A parameterized maximum likelihood method for multipaths channels estimation , 1999, 1999 2nd IEEE Workshop on Signal Processing Advances in Wireless Communications (Cat. No.99EX304).

[35]  Lennart Ljung,et al.  System identification (2nd ed.): theory for the user , 1999 .

[36]  J. F. Hauer,et al.  SIMO system identification from measured ringdowns , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[37]  Björn E. Ottersten,et al.  Maximum likelihood array processing in spatially correlated noise fields using parameterized signals , 1997, IEEE Trans. Signal Process..

[38]  D. Satpathi,et al.  Optimal transducer placement for health monitoring of long span bridge , 1997 .

[39]  B. Ninness,et al.  A unifying construction of orthonormal bases for system identification , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[40]  P. H. Kirkegaard,et al.  On the optimal location of sensors for parametric identification of linear structural systems , 1994 .

[41]  Björn E. Ottersten,et al.  Instrumental variable approach to array processing in spatially correlated noise fields , 1994, IEEE Trans. Signal Process..

[42]  Björn E. Ottersten,et al.  Sensor array processing based on subspace fitting , 1991, IEEE Trans. Signal Process..

[43]  Yucai Zhu Black-box identification of mimo transfer functions: Asymptotic properties of prediction error models , 1989 .

[44]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[45]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[46]  Jae S. Lim,et al.  Speech enhancement , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[47]  L. Ljung Asymptotic variance expressions for identified black-box transfer function models , 1984, The 23rd IEEE Conference on Decision and Control.

[48]  L. Ljung,et al.  Black-box identification of multivariable transfer functions—asymptotic properties and optimal input design , 1984 .

[49]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[50]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[51]  L. Ljung,et al.  Asymptotic normality of prediction error estimators for approximate system models , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[52]  M. Bartlett An Inverse Matrix Adjustment Arising in Discriminant Analysis , 1951 .