Constraint Satisfaction with Counting Quantifiers

We initiate the study of constraint satisfaction problems (CSPs) in the presence of counting quantifiers $\exists^{\geq j}$ which assert the existence of at least $j$ elements such that the ensuing property holds. These are natural variants of CSPs in the mould of quantified CSPs (QCSPs). Namely, $\exists^{\geq 1}:=\exists$ and $\exists^{\geq n}:=\forall$ (for the domain of size $n$). We observe that a single counting quantifier $\exists^{\geq j}$ strictly between $\exists$ and $\forall$ already affords the maximal possible complexity of QCSPs (which have both $\exists$ and $\forall$), namely, being Pspace-complete for a suitably chosen template. Therefore, to better understand the complexity of this problem, we focus on restricted cases for which we derive the following results. First, for all subsets of counting quantifiers on clique and cycle templates, we give a full trichotomy---all such problems are in P, NP-complete, or Pspace-complete. Second, we consider the problem with exactly two quantifiers: ...

[1]  Klaus-Jörn Lange,et al.  Some results on majority quantifiers over words , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[2]  Omer Reingold,et al.  Undirected connectivity in log-space , 2008, JACM.

[3]  Phokion G. Kolaitis,et al.  Finite Model Theory and Its Applications (Texts in Theoretical Computer Science. An EATCS Series) , 2005 .

[4]  Hubie Chen,et al.  The Complexity of Quantified Constraint Satisfaction: Collapsibility, Sink Algebras, and the Three-Element Case , 2006, SIAM J. Comput..

[5]  Barnaby Martin First-Order Model Checking Problems Parameterized by the Model , 2008, CiE.

[6]  Barnaby Martin,et al.  Constraint Satisfaction with Counting Quantifiers 2 , 2014, CSR.

[7]  Jaroslav Nesetril,et al.  On the complexity of H-coloring , 1990, J. Comb. Theory, Ser. B.

[8]  Y. Gurevich On Finite Model Theory , 1990 .

[9]  Andrei A. Bulatov,et al.  A dichotomy theorem for constraint satisfaction problems on a 3-element set , 2006, JACM.

[10]  Libor Barto,et al.  The CSP Dichotomy Holds for Digraphs with No Sources and No Sinks (A Positive Answer to a Conjecture of Bang-Jensen and Hell) , 2008, SIAM J. Comput..

[11]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[12]  Hubie Chen,et al.  Existentially restricted quantified constraint satisfaction , 2005, Inf. Comput..

[13]  Barnaby Martin,et al.  Constraint Satisfaction with Counting Quantifiers , 2012, CSR.

[14]  Andrei A. Bulatov,et al.  Galois Correspondence for Counting Quantifiers , 2012, J. Multiple Valued Log. Soft Comput..

[15]  Barnaby Martin QCSP on Partially Reflexive Forests , 2011, CP.

[16]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[17]  Robin Clark,et al.  Number sense and quantifier interpretation , 2007 .

[18]  Peter Jeavons,et al.  The complexity of constraint satisfaction games and QCSP , 2009, Inf. Comput..

[19]  Pavol Hell,et al.  List Homomorphisms to Reflexive Graphs , 1998, J. Comb. Theory, Ser. B.

[20]  Hubie Chen,et al.  Quantified constraint satisfaction and the polynomially generated powers property , 2008, ICALP.

[21]  P. Buneman A Note on the Metric Properties of Trees , 1974 .

[22]  Martin Charles Golumbic,et al.  The edge intersection graphs of paths in a tree , 1985, J. Comb. Theory, Ser. B.

[23]  Gustav Nordh,et al.  Retractions to Pseudoforests , 2010, SIAM J. Discret. Math..

[24]  Pavol Hell,et al.  Space complexity of list H-colouring: a dichotomy , 2013, SODA.

[25]  Barnaby Martin,et al.  The complexity of surjective homomorphism problems - a survey , 2011, Discret. Appl. Math..

[26]  Martin Otto,et al.  Bounded Variable Logics and Counting: A Study in Finite Models , 1997, Lecture Notes in Logic.

[27]  Victor Chepoi,et al.  Diameters , centers , and approximating trees of δ-hyperbolic geodesic spaces and graphs ∗ [ Extended Abstract ] , 2007 .

[28]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[29]  Barnaby Martin,et al.  QCSP on Partially Reflexive Cycles - The Wavy Line of Tractability , 2013, CSR.

[30]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[31]  Barnaby Martin,et al.  Towards a Trichotomy for Quantified H-Coloring , 2006, CiE.

[32]  Andrei A. Bulatov,et al.  Counting Predicates, Subset Surjective Functions, and Counting CSPs , 2012, 2012 IEEE 42nd International Symposium on Multiple-Valued Logic.

[33]  Pavol Hell,et al.  List Homomorphisms and Circular Arc Graphs , 1999, Comb..

[34]  Edith Hemaspaandra,et al.  Dichotomy Theorems for Alternation-Bounded Quantified Boolean Formulas , 2004, ArXiv.