Overview of machine learning based side-channel analysis methods

Recent publications have shown that there is a possibility to apply machine learning methods for side-channel analysis, mostly for profiling based attacks. In this paper, we present a brief overview of those methods, and highlight what are the improvements that might be offered. It is shown that, in most cases, the performance of these methods could outperform the classical attacks. Here, we also discuss what could be the other potential applications of the learning algorithms, for example, as feature selection or for construction of leakage model.

[1]  Elisabeth Oswald,et al.  The Myth of Generic DPA...and the Magic of Learning , 2014, CT-RSA.

[2]  2014 International Symposium on Integrated Circuits (ISIC), Singapore, December 10-12, 2014 , 2014, ISIC.

[3]  Christof Paar,et al.  Gaussian Mixture Models for Higher-Order Side Channel Analysis , 2007, CHES.

[4]  An Wang,et al.  Improved Leakage Model Based on Genetic Algorithm , 2014, IACR Cryptol. ePrint Arch..

[5]  Pankaj Rohatgi,et al.  Template Attacks , 2002, CHES.

[6]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[7]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[8]  Zdenek Martinasek,et al.  Innovative Method of the Power Analysis , 2013 .

[9]  Christof Paar,et al.  A Stochastic Model for Differential Side Channel Cryptanalysis , 2005, CHES.

[10]  Ramón Díaz-Uriarte,et al.  Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.

[11]  Cédric Meuter,et al.  Semi-Supervised Template Attack , 2013, COSADE.

[12]  Moti Yung,et al.  A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks (extended version) , 2009, IACR Cryptol. ePrint Arch..

[13]  Mikhail Belkin,et al.  Semi-Supervised Learning , 2021, Machine Learning.

[14]  Sotiris B. Kotsiantis,et al.  Supervised Machine Learning: A Review of Classification Techniques , 2007, Informatica.

[15]  Marko Grobelnik,et al.  Feature Selection Using Support Vector Machines , 2002 .

[16]  Christophe Clavier,et al.  Correlation Power Analysis with a Leakage Model , 2004, CHES.

[17]  Pedro M. Domingos A few useful things to know about machine learning , 2012, Commun. ACM.

[18]  Paul C. Kocher,et al.  Differential Power Analysis , 1999, CRYPTO.

[19]  Shou-De Lin,et al.  An Unsupervised Learning Model to Perform Side Channel Attack , 2013, PAKDD.

[20]  Annelie Heuser,et al.  Intelligent Machine Homicide - Breaking Cryptographic Devices Using Support Vector Machines , 2012, COSADE.

[21]  H. B. Barlow,et al.  Unsupervised Learning , 1989, Neural Computation.

[22]  Bart Preneel,et al.  Mutual Information Analysis A Generic Side-Channel Distinguisher , 2008 .

[23]  Kerstin Lemke-Rust,et al.  Efficient Template Attacks Based on Probabilistic Multi-class Support Vector Machines , 2012, CARDIS.

[24]  Andreas Ibing,et al.  Clustering Algorithms for Non-profiled Single-Execution Attacks on Exponentiations , 2013, CARDIS.

[25]  Naftali Tishby,et al.  Learning to Select Features using their Properties , 2008 .

[26]  Laurent Imbert,et al.  Attacking Randomized Exponentiations Using Unsupervised Learning , 2014, COSADE.

[27]  Zdenek Martinasek,et al.  Optimization of Power Analysis Using Neural Network , 2013, CARDIS.

[28]  Olivier Markowitch,et al.  Side channel attack: an approach based on machine learning , 2011 .

[29]  Yuichi Komano,et al.  BS-CPA: Built-In Determined Sub-Key Correlation Power Analysis , 2010, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[30]  Bart Preneel,et al.  Mutual Information Analysis , 2008, CHES.

[31]  Olivier Markowitch,et al.  A Time Series Approach for Profiling Attack , 2013, SPACE.

[32]  Olivier Markowitch,et al.  A Machine Learning Approach Against a Masked AES , 2013, CARDIS.

[33]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[34]  Terrence J. Sejnowski,et al.  Unsupervised Learning , 2018, Encyclopedia of GIS.

[35]  Sylvain Guilley,et al.  First Principal Components Analysis: A New Side Channel Distinguisher , 2010, ICISC.

[36]  David A. Wagner,et al.  Hidden Markov Model Cryptanalysis , 2003, CHES.

[37]  Paul C. Kocher,et al.  Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems , 1996, CRYPTO.

[38]  Lejla Batina,et al.  Differential Cluster Analysis , 2009, CHES.

[39]  J. Jaffe,et al.  Side Channel Cryptanalysis Using Machine Learning Using an SVM to recover DES keys from a smart card . , 2012 .

[40]  Ashutosh Kumar Singh,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2010 .