Considerations for Progressive Damage in Fiber-Reinforced Composite Materials Subject to Fatigue

Due to the increased use of composite materials in the aerospace industry, numerous attempts have been made to develop fatigue models in order to predict the fatigue behaviour and consequently the fatigue life of these materials. Existing fatigue models have significant deficiencies, thus are not widely acceptable in the industry. A better understanding of the exhibited fatigue behaviour of composite materials is consequently required. The complex nature of fatigue behaviour in fiber-reinforced composite materials is presently investigated. An explicit progressive damage model, that is mechanistic in nature, is currently being developed using the concept of a representative volume element. A micromechanical finite element model that is capable of explicit damage initiation and propagation modeling is utilized for simulation of damage development. The predicted numerical results illustrate the capabilities of the current model. Future work is also outlined in the paper as the development of the fatigue model is continued.

[1]  Larry Lessard,et al.  Progressive Fatigue Damage Modeling of Composite Materials, Part II: Material Characterization and Model Verification , 2000 .

[2]  S. L. Ogin,et al.  On transverse matrix cracking in cross-ply laminates loaded in simple bending , 1999 .

[3]  Kenneth Reifsnider,et al.  The critical element model: A modeling philosophy , 1986 .

[4]  T. Adam,et al.  A Power Law Fatigue Damage Model for Fibre-Reinforced Plastic Laminates , 1986 .

[5]  Alberto D'Amore,et al.  Flexural fatigue behaviour of random continuous-fibre-reinforced thermoplastic composites , 1998 .

[6]  J. N. Yang,et al.  Modulus reduction and fatigue damage of matrix dominated composite laminates , 1992 .

[7]  E. W. C. Wilkins,et al.  Cumulative damage in fatigue , 1956 .

[8]  W. Hwang,et al.  Fatigue of Composites—Fatigue Modulus Concept and Life Prediction , 1986 .

[9]  F. L. Matthews,et al.  A Progressive Damage Model for Mechanically Fastened Joints in Composite Laminates , 1999 .

[10]  W. Hwang,et al.  Cumulative Damage Models and Multi-Stress Fatigue Life Prediction , 1986 .

[11]  Zihui Xia,et al.  A meso/micro-mechanical model for damage progression in glass-fiber/epoxy cross-ply laminates by finite-element analysis , 2000 .

[12]  H. Whitworth,et al.  Modeling Stiffness Reduction of Graphite/Epoxy Composite Laminates , 1987 .

[13]  M. Owen,et al.  The accumulation of damage in a glass-reinforced plastic under tensile and fatigue loading , 1972 .

[14]  George Z. Voyiadjis,et al.  Damage in composite materials , 1993 .

[15]  Sung Kyu Ha,et al.  Micro-Mechanics of Failure (MMF) for Continuous Fiber Reinforced Composites: , 2008 .

[16]  Fernand Ellyin,et al.  A fatigue failure criterion for fiber reinforced composite laminae , 1990 .

[17]  Ramesh Talreja,et al.  Fatigue of composite materials , 1987 .

[18]  R. Prinz,et al.  Fatigue life estimation of graphite/epoxy laminates under consideration of delamination growth , 1989 .

[19]  Ramesh Talreja,et al.  Transverse Cracking and Stiffness Reduction in Composite Laminates , 1985 .

[20]  Bryan Harris,et al.  Fatigue in composites , 2003 .

[21]  Sung Kyu Ha,et al.  Design of a Hybrid Composite Flywheel Multi-rim Rotor System using Geometric Scaling Factors , 2008 .

[22]  K. Reifsnider,et al.  Fatigue Damage Evaluation through Stiffness Measurements in Boron-Epoxy Laminates , 1981 .

[23]  Constantinos Soutis,et al.  Matrix cracking in polymeric composites laminates: Modelling and experiments , 2008 .

[24]  R. Kim,et al.  Fatigue Behavior of Composite Laminate , 1976 .

[25]  Isaac M Daniel,et al.  Composite Materials: Testing and Design , 1982 .

[26]  A. Waas,et al.  Braided textile composites under compressive loads : Modeling the response, strength and degradation , 2007 .

[27]  A. Bunsell,et al.  Micromechanisms of load transfer in a unidirectional carbon fibre–reinforced epoxy composite due to fibre failures. Part 1: Micromechanisms and 3D analysis of load transfer: The elastic case , 2006 .

[28]  Fernand Ellyin,et al.  Fatigue Failure Model for Fibre-Reinforced Materials under General Loading Conditions , 1994 .

[29]  Z. Hashin,et al.  A Fatigue Failure Criterion for Fiber Reinforced Materials , 1973 .

[30]  Lj Broutman,et al.  A New Theory to Predict Cumulative Fatigue Damage in Fiberglass Reinforced Plastics , 1972 .

[31]  Liang Jun,et al.  Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension , 2009 .

[32]  Zvi Hashin,et al.  Analysis of cracked laminates: a variational approach , 1985 .

[33]  N. Laws,et al.  Stiffness changes in unidirectional composites caused by crack systems , 1983 .

[34]  Pierre Ladevèze,et al.  Illustrations of a microdamage model for laminates under oxidizing thermal cycling , 2009 .

[35]  Z. Hashin,et al.  A CUMULATIVE DAMAGE THEORY OF FATIGUE FAILURE , 1978 .

[36]  David H. Allen,et al.  A thermomechanical constitutive theory for elastic composites with distributed damage. II: Application to matrix cracking in laminated composites , 1987 .

[37]  Bryan Harris,et al.  Fatigue in Composite , 2003 .

[38]  Leon Mishnaevsky,et al.  Micromechanisms of damage in unidirectional fiber reinforced composites: 3D computational analysis , 2009 .

[39]  Ramesh Talreja,et al.  Stiffness properties of composite laminates with matrix cracking and interior delamination , 1986 .

[40]  H. Whitworth,et al.  Cumulative Damage in Composites , 1990 .

[41]  Pierre Ladevèze,et al.  Durability of CFRP laminates under thermomechanical loading: A micro–meso damage model , 2006 .

[42]  W. Van Paepegem,et al.  Experimental set-up for and numerical modelling of bending fatigue experiments on plain woven glass/epoxy composites , 2001 .

[43]  Douglas L. Jones,et al.  Load Sequence Effects on Graphite/Epoxy [±35] 2s Laminates , 1983 .

[44]  C. Sun,et al.  Prediction of composite properties from a representative volume element , 1996 .

[45]  Douglas L. Jones,et al.  A Stiffness Degradation Model for Graphite/Epoxy Laminates , 1988 .

[46]  Larry Lessard,et al.  Progressive Fatigue Damage Modeling of Composite Materials, Part I: Modeling , 2000 .

[47]  Kenneth Reifsnider,et al.  A micromechanics model for composites under fatigue loading , 1991 .

[48]  H. Hahn,et al.  Proof Testing of Composite Materials , 1975 .

[49]  Pierre Ladevèze,et al.  Damage modelling of the elementary ply for laminated composites , 1992 .

[50]  J. Berthelot,et al.  Stiffness reduction and energy release rate of cross-ply laminates during fatigue tests , 1995 .

[51]  B. Harris 1 – A historical review of the fatigue behaviour of fibre-reinforced plastics , 2003 .

[52]  Joakim Schön,et al.  A model of fatigue delamination in composites , 2000 .

[53]  S. M. Spearing,et al.  Fatigue damage mechanics of composite materials Part IV: Prediction of post-fatigue stiffness , 1992 .

[54]  Ian P Bond,et al.  Fatigue life prediction for GRP subjected to variable amplitude loading , 1999 .

[55]  David H. Allen,et al.  A thermomechanical constitutive theory for elastic composites with distributed damage—I. Theoretical development , 1987 .

[56]  Rong-rong Zhang,et al.  Fatigue Damage of Fiber Reinforced Composites: Simultaneous Growth of Interfacial Debonding and Matrix Annular Crack Surrounding Fiber , 2008 .

[57]  B. D. Agarwal,et al.  Analysis and Performance of Fiber Composites , 1980 .

[58]  A. Rotem,et al.  Fatigue and residual strength of composite laminates , 1986 .

[59]  E Harris Charles,et al.  A Progressive Damage Methodology for Residual Strength Predictions of Notched Composite Panels , 1998 .

[60]  Kenneth Reifsnider,et al.  Stiffness-reduction mechanisms in composite laminates , 1982 .

[61]  G. Sendeckyj,et al.  Life Prediction for Resin-Matrix Composite Materials , 1991 .

[62]  H. Whitworth,et al.  Evaluation of the residual strength degradation in composite laminates under fatigue loading , 2000 .

[63]  Ulrich Hansen,et al.  Damage Development in Woven Fabric Composites during Tension-Tension Fatigue , 1999 .