First principles calculation study of single transition metal atom grafted Au25 as efficient electrocatalysts for OER and ORR

[1]  N. Zheng,et al.  N-Heterocyclic Carbene-Stabilized Gold Nanoclusters with Organometallic Motifs for Promoting Catalysis. , 2022, Journal of the American Chemical Society.

[2]  Shufang Tian,et al.  Oxygen Electrocatalysis by [Au25(SR)18]: Charge, Doping, and Ligand Removal Effect , 2021 .

[3]  Yijun Zhong,et al.  Fabrication of an Au25 -Cys-Mo Electrocatalyst for Efficient Nitrogen Reduction to Ammonia under Ambient Conditions. , 2021, Small.

[4]  Jun Jiang,et al.  Electronic Spin Moment As a Catalytic Descriptor for Fe Single-Atom Catalysts Supported on C2N. , 2021, Journal of the American Chemical Society.

[5]  Michael J. Cowan,et al.  Predicting ligand removal energetics in thiolate-protected nanoclusters from molecular complexes. , 2021, Nanoscale.

[6]  Douglas R. Kauffman,et al.  Boosting CO2 Electrochemical Reduction with Atomically Precise Surface Modification on Gold Nanoclusters. , 2020, Angewandte Chemie.

[7]  Douglas R. Kauffman,et al.  Monopalladium Substitution in Gold Nanoclusters Enhances CO2 Electroreduction Activity and Selectivity , 2020 .

[8]  B. Kumar,et al.  Gold nanoclusters as electrocatalysts: size, ligands, heteroatom doping, and charge dependences. , 2020, Nanoscale.

[9]  Xiaofeng Cui,et al.  Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands. , 2018, Journal of the American Chemical Society.

[10]  Jinwoo Lee,et al.  Controlled Leaching Derived Synthesis of Atomically Dispersed/Clustered Gold on Mesoporous Cobalt Oxide for Enhanced Oxygen Evolution Reaction Activity , 2018, Small Methods.

[11]  K. Artyushkova,et al.  Electrocatalytic Oxygen Reduction Activities of Thiol-Protected Nanomolecules Ranging in Size from Au28(SR)20 to Au279(SR)84 , 2018, The Journal of Physical Chemistry C.

[12]  James R. McKone,et al.  Elucidating the active sites for CO2 electroreduction on ligand-protected Au25 nanoclusters , 2018 .

[13]  A. Volinsky,et al.  Study of oxygen evolution reaction on amorphous Au13@Ni120P50 nanocluster. , 2018, Physical chemistry chemical physics : PCCP.

[14]  Jingxiang Zhao,et al.  Computational screening for high-activity MoS2 monolayer-based catalysts for the oxygen reduction reaction via substitutional doping with transition metal , 2017 .

[15]  Xiaoqing Pan,et al.  Atomic interpretation of high activity on transition metal and nitrogen-doped carbon nanofibers for catalyzing oxygen reduction , 2017 .

[16]  R. Jin,et al.  Gold Nanoclusters Promote Electrocatalytic Water Oxidation at the Nanocluster/CoSe2 Interface. , 2017, Journal of the American Chemical Society.

[17]  Tao Wu,et al.  Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis , 2016, Science.

[18]  Qinghua Zhang,et al.  Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction , 2016, Science.

[19]  Lai‐Sheng Wang,et al.  Diphosphine-Protected Au22 Nanoclusters on Oxide Supports Are Active for Gas-Phase Catalysis without Ligand Removal. , 2016, Nano letters.

[20]  R. Jin,et al.  Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. , 2016, Chemical reviews.

[21]  Yadong Li,et al.  Amorphous nickel boride membrane on a platinum–nickel alloy surface for enhanced oxygen reduction reaction , 2016, Nature Communications.

[22]  Qian-nan Wang,et al.  Porous Carbon-Supported Gold Nanoparticles for Oxygen Reduction Reaction: Effects of Nanoparticle Size. , 2016, ACS applied materials & interfaces.

[23]  Douglas R. Kauffman,et al.  Active sites of ligand-protected Au25 nanoparticle catalysts for CO2 electroreduction to CO. , 2016, The Journal of chemical physics.

[24]  U. G. Vej-Hansen,et al.  Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction , 2016, Science.

[25]  Qian-nan Wang,et al.  Oxygen reduction catalyzed by gold nanoclusters supported on carbon nanosheets. , 2016, Nanoscale.

[26]  X. Duan,et al.  High-performance transition metal–doped Pt3Ni octahedra for oxygen reduction reaction , 2015, Science.

[27]  A. Xu,et al.  Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. , 2014, Journal of the American Chemical Society.

[28]  Wei Chen,et al.  Charge state-dependent catalytic activity of [Au(25)(SC(12)H(25))18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide. , 2014, Chemical communications.

[29]  M. L. Ng,et al.  In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. , 2014, Angewandte Chemie.

[30]  Rongchao Jin,et al.  Atomically precise gold nanoclusters as new model catalysts. , 2013, Accounts of chemical research.

[31]  Zhiyu Wang,et al.  Metal Oxide Hollow Nanostructures for Lithium‐ion Batteries , 2012, Advanced materials.

[32]  Pingwu Du,et al.  Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges , 2012 .

[33]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[34]  O. A. Shlyakhtin,et al.  Tailoring the selectivity for electrocatalytic oxygen evolution on ruthenium oxides by zinc substitution. , 2010, Angewandte Chemie.

[35]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[36]  Wei Chen,et al.  Oxygen electroreduction catalyzed by gold nanoclusters: strong core size effects. , 2009, Angewandte Chemie.

[37]  Joost VandeVondele,et al.  Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. , 2007, The Journal of chemical physics.

[38]  Mahlon Wilson,et al.  Scientific aspects of polymer electrolyte fuel cell durability and degradation. , 2007, Chemical reviews.

[39]  J. Solla-Gullón,et al.  Electrochemistry of Shape-Controlled Catalysts: Oxygen Reduction Reaction on Cubic Gold Nanoparticles , 2007 .

[40]  D. Pletcher,et al.  Enhanced activity for electrocatalytic oxidation of carbon monoxide on titania-supported gold nanoparticles. , 2007, Angewandte Chemie.

[41]  G. Hutchings,et al.  Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions , 2005, Nature.

[42]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[43]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[44]  Peter Claus,et al.  Identification of active sites in gold-catalyzed hydrogenation of acrolein. , 2003, Journal of the American Chemical Society.

[45]  Masatake Haruta,et al.  Advances in the catalysis of Au nanoparticles , 2001 .

[46]  L. Carrette,et al.  Fuel Cells - Fundamentals and Applications , 2001 .

[47]  John Davey,et al.  Recent advances in direct methanol fuel cells at Los Alamos National Laboratory , 2000 .

[48]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[49]  G. Cerrato,et al.  FTIR, UV−Vis, and HRTEM Study of Au/ZrO2 Catalyst: Reduced Reactivity in the CO−O2 Reaction of Electron-Deficient Gold Sites Present on the Used Samples , 1998 .

[50]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[51]  M. Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1995, Physical review. B, Condensed matter.

[52]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.