An EM-like algorithm for color-histogram-based object tracking

The iterative procedure called 'mean-shift' is a simple robust method for finding the position of a local mode (local maximum) of a kernel-based estimate of a density function. A new robust algorithm is given here that presents a natural extension of the 'mean-shift' procedure. The new algorithm simultaneously estimates the position of the local mode and the covariance matrix that describes the approximate shape of the local mode. We apply the new method to develop a new 5-degrees of freedom (DOF) color histogram based non-rigid object tracking algorithm.

[1]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[2]  R. Maronna Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .

[3]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[4]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[5]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[6]  Radford M. Neal A new view of the EM algorithm that justifies incremental and other variants , 1993 .

[7]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[8]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[10]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[11]  IEEE conference on computer vision and pattern recognition , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[12]  Haifeng Chen,et al.  Robust Computer Vision through Kernel Density Estimation , 2002, ECCV.

[13]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[15]  Thomas P. Minka The ‘summation hack’ as an outlier model , 2003 .

[16]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[17]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[18]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.