Extending Łukasiewicz Logics with a Modality: Algebraic Approach to Relational Semantics

This paper presents an algebraic approach of some many-valued generalizations of modal logic. The starting point is the definition of the [0, 1]-valued Kripke models, where [0, 1] denotes the well known MV-algebra. Two types of structures are used to define validity of formulas: the class of frames and the class of Łn-valued frames. The latter structures are frames in which we specify in each world u the set (a subalgebra of Łn) of the allowed truth values of the formulas in u. We apply and develop algebraic tools (namely, canonical and strong canonical extensions) to generate complete modal n + 1-valued logics and we obtain many-valued counterparts of Shalqvist canonicity result.

[1]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .

[2]  Bruno Teheux,et al.  Completeness results for many-valued \Lukasiewicz modal systems and relational semantics , 2006 .

[3]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[4]  Yde Venema,et al.  Algebras and coalgebras , 2007, Handbook of Modal Logic.

[5]  Yde Venema,et al.  A Sahlqvist theorem for distributive modal logic , 2005, Ann. Pure Appl. Log..

[6]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[7]  Melvin Fitting,et al.  Many-valued modal logics II , 1992 .

[8]  Daniele Mundici,et al.  MV-algebras: a variety for magnitudes with archimedean units , 2005 .

[9]  M. de Rijke,et al.  Sahlqvist's theorem for boolean algebras with operators with an application to cylindric algebras , 1995, Stud Logica.

[10]  A. Tarski,et al.  Boolean Algebras with Operators. Part I , 1951 .

[11]  Melvin Fitting,et al.  Tableaus for many-valued modal logic , 1995, Stud Logica.

[12]  Pascal Ostermann,et al.  Many-Valued Modal Propositional Calculi , 1988, Math. Log. Q..

[13]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[14]  Brian F. Chellas Modal Logic: Normal systems of modal logic , 1980 .

[15]  Philippe Niederkorn,et al.  Natural Dualities for Varieties of MV-Algebras, I☆ , 2001 .

[16]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[17]  Mai Gehrke,et al.  MONOTONE BOUDED DISTRIBUTIVE LATTICE EXPANSIONS , 2000 .

[18]  Lluis Godo,et al.  On the Minimum Many-Valued Modal Logic over a Finite Residuated Lattice , 2008, J. Log. Comput..

[19]  C. Chang,et al.  A new proof of the completeness of the Łukasiewicz axioms , 1959 .

[20]  Bjarni Jónsson,et al.  On the canonicity of Sahlqvist identities , 1994, Stud Logica.

[21]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[22]  Xavier Caicedo,et al.  Standard Gödel Modal Logics , 2010, Stud Logica.

[23]  Melvin Fitting,et al.  Many-valued modal logics , 1991, Fundam. Informaticae.

[24]  M. Gehrke,et al.  Bounded Lattice Expansions , 2001 .

[25]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[26]  Mai Gehrke,et al.  Bounded distributive lattice expansions , 2004 .

[27]  Yde Venema,et al.  The preservation of Sahlqvist equations in completions of Boolean algebras with operators , 1999 .

[28]  Saul A. Kripke,et al.  Semantical Analysis of Modal Logic I Normal Modal Propositional Calculi , 1963 .