Image classification for content-based indexing

Grouping images into (semantically) meaningful categories using low-level visual features is a challenging and important problem in content-based image retrieval. Using binary Bayesian classifiers, we attempt to capture high-level concepts from low-level image features under the constraint that the test image does belong to one of the classes. Specifically, we consider the hierarchical classification of vacation images; at the highest level, images are classified as indoor or outdoor; outdoor images are further classified as city or landscape; finally, a subset of landscape images is classified into sunset, forest, and mountain classes. We demonstrate that a small vector quantizer (whose optimal size is selected using a modified MDL criterion) can be used to model the class-conditional densities of the features, required by the Bayesian methodology. The classifiers have been designed and evaluated on a database of 6931 vacation photographs. Our system achieved a classification accuracy of 90.5% for indoor/outdoor, 95.3% for city/landscape, 96.6% for sunset/forest and mountain, and 96% for forest/mountain classification problems. We further develop a learning method to incrementally train the classifiers as additional data become available. We also show preliminary results for feature reduction using clustering techniques. Our goal is to combine multiple two-class classifiers into a single hierarchical classifier.

[1]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[2]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[3]  R. Gray,et al.  Vector quantization , 1984, IEEE ASSP Magazine.

[4]  Zenon W. Pylyshyn,et al.  Computational processes in human vision : an interdisciplinary perspective , 1988 .

[5]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[6]  Anil K. Jain,et al.  Texture classification and segmentation using multiresolution simultaneous autoregressive models , 1992, Pattern Recognit..

[7]  Jorma Laaksonen,et al.  LVQPAK: A software package for the correct application of Learning Vector Quantization algorithms , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[8]  T. Kohonen,et al.  Appendix 2.4 Stopping Rule 2.3 Fine Tuning Using the Basic Lvq1 or Lvq2.1 Lvq Pak: a Program Package for the Correct Application of Learning Vector Quantization Algorithms , 1992 .

[9]  R. Gray,et al.  Using vector quantization for image processing , 1993, Proc. IEEE.

[10]  K. Wakimoto,et al.  Efficient and Effective Querying by Image Content , 1994 .

[11]  A. Oliva,et al.  From Blobs to Boundary Edges: Evidence for Time- and Spatial-Scale-Dependent Scene Recognition , 1994 .

[12]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[13]  Stephen W. Smoliar,et al.  Video parsing, retrieval and browsing: an integrated and content-based solution , 1997, MULTIMEDIA '95.

[14]  HongJiang Zhang,et al.  Scheme for visual feature-based image indexing , 1995, Electronic Imaging.

[15]  B. S. Manjunath,et al.  Image indexing using a texture dictionary , 1995, Other Conferences.

[16]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[17]  Alex Pentland,et al.  Photobook: tools for content-based manipulation of image databases , 1994, Other Conferences.

[18]  Markus A. Stricker,et al.  Color indexing with weak spatial constraints , 1996, Electronic Imaging.

[19]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[20]  Rosalind W. Picard,et al.  Interactive Learning Using a "Society of Models" , 2017, CVPR 1996.

[21]  Shih-Fu Chang,et al.  Clustering methods for video browsing and annotation , 1996, Electronic Imaging.

[22]  Anil K. Jain,et al.  Feature Selection: Evaluation, Application, and Small Sample Performance , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Robert M. Gray,et al.  Vector quantization and density estimation , 1997, Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171).

[24]  Tom Minka,et al.  Interactive learning with a "society of models" , 1997, Pattern Recognit..

[25]  Thomas S. Huang,et al.  Supporting content-based queries over images in MARS , 1997, Proceedings of IEEE International Conference on Multimedia Computing and Systems.

[26]  Amarnath Gupta,et al.  Virage video engine , 1997, Electronic Imaging.

[27]  Ramin Zabih,et al.  Comparing images using color coherence vectors , 1997, MULTIMEDIA '96.

[28]  Nuno Vasconcelos,et al.  Library-based coding: a representation for efficient video compression and retrieval , 1997, Proceedings DCC '97. Data Compression Conference.

[29]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[30]  Martin Szummer,et al.  Indoor-outdoor image classification , 1998, Proceedings 1998 IEEE International Workshop on Content-Based Access of Image and Video Database.

[31]  Anil K. Jain,et al.  Bayesian framework for semantic classification of outdoor vacation images , 1998, Electronic Imaging.

[32]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[34]  Ingemar J. Cox,et al.  Psychophysical studies of the performance of an image database retrieval system , 1998, Electronic Imaging.

[35]  Charles A. Bouman,et al.  Perceptual image similarity experiments , 1998, Electronic Imaging.

[36]  Anil K. Jain,et al.  On image classification: city images vs. landscapes , 1998, Pattern Recognit..

[37]  Yoram Singer,et al.  A New Parameter Estimation Method for Gaussian Mixtures , 1998, NIPS 1998.

[38]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Multimedia Systems.

[39]  José M. N. Leitão,et al.  On Fitting Mixture Models , 1999, EMMCVPR.

[40]  Anil K. Jain,et al.  Content-based hierarchical classification of vacation images , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[41]  Anil K. Jain,et al.  Unsupervised selection and estimation of finite mixture models , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[42]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..