Symmetric scrolled packings of multilayered carbon nanoribbons

[1]  S. Dmitriev,et al.  Simulation of folded and scrolled packings of carbon nanoribbons , 2015 .

[2]  Xiao-liang Sun,et al.  A novel method for designing carbon nanostructures: Tailoring-induced self-scrolling of graphene flakes , 2015 .

[3]  Zhongyuan Huang,et al.  A simple microexplosion synthesis of graphene-based scroll-sheet conjoined nanomaterials for enhanced supercapacitor properties , 2015 .

[4]  S. Dmitriev,et al.  Scroll configurations of carbon nanoribbons , 2015, 1504.06286.

[5]  Xiaoxuan Xu,et al.  Carbon nanoscrolls fabricated from graphene nanoribbons using Ni nanowire templates: A molecular dynamics simulation , 2015 .

[6]  I. Calizo,et al.  Carbon scrolls from chemical vapor deposition grown graphene , 2014 .

[7]  K. Zhou,et al.  Mechanical properties of bulk carbon nanostructures: effect of loading and temperature. , 2014, Physical chemistry chemical physics : PCCP.

[8]  S. Dmitriev,et al.  Moving wrinklon in graphene nanoribbons , 2014 .

[9]  C. Wang,et al.  Temperature-induced unfolding of scrolled graphene and folded graphene , 2014 .

[10]  K. Zhou,et al.  Mechanical properties and structures of bulk nanomaterials based on carbon nanopolymorphs , 2014 .

[11]  Hui Wang,et al.  Ultralow-frequency shear modes of 2-4 layer graphene observed in scroll structures at edges , 2014, 1401.0804.

[12]  Xinghua Shi,et al.  Mechanics of rolling of nanoribbon on tube and sphere. , 2013, Nanoscale.

[13]  J. Baimova,et al.  Effect of strain on gap discrete breathers at the edge of armchair graphene nanoribbons , 2013 .

[14]  X. Zha,et al.  Atomic simulation of the formation and mechanical behavior of carbon nanoscrolls , 2013 .

[15]  D. Galvão,et al.  Controlled route to the fabrication of carbon and boron nitride nanoscrolls: A molecular dynamics investigation , 2013 .

[16]  Shuze Zhu,et al.  Hydrogenation enabled scrolling of graphene , 2013 .

[17]  Ramiz A. Boulos,et al.  Shear induced formation of carbon and boron nitride nano-scrolls. , 2013, Nanoscale.

[18]  K. Zhou,et al.  Discrete breather clusters in strained graphene , 2012 .

[19]  S. Dmitriev,et al.  Discrete breather on the edge of the graphene sheet with the armchair orientation , 2012 .

[20]  Zhao Zhang,et al.  Buckling instability of carbon nanoscrolls , 2012 .

[21]  K. Zhou,et al.  Unidirectional ripples in strained graphene nanoribbons with clamped edges at zero and finite temperatures , 2012 .

[22]  Zhongyuan Huang,et al.  Supercapacitors based on high-quality graphene scrolls. , 2012, Nanoscale.

[23]  Y. Kivshar,et al.  Velocities of sound and the densities of phonon states in a uniformly strained flat graphene sheet , 2012 .

[24]  Huajian Gao,et al.  Constitutive behavior of pressurized carbon nanoscrolls , 2011 .

[25]  Y. Kivshar,et al.  Stability range for a flat graphene sheet subjected to in-plane deformation , 2011 .

[26]  Liangyong Chu,et al.  Fabrication of Carbon Nanoscrolls from Monolayer Graphene Controlled by P-Doped Silicon Nanowires: A MD Simulation Study , 2011 .

[27]  P. Král,et al.  Self-assembly of graphene nanostructures on nanotubes. , 2011, ACS nano.

[28]  Lianfeng Sun,et al.  Raman spectra and temperature-dependent Raman scattering of carbon nanoscrolls , 2011 .

[29]  Huajian Gao,et al.  Mechanics of carbon nanoscrolls: A review , 2010 .

[30]  Teng Li,et al.  Carbon nanotube initiated formation of carbon nanoscrolls , 2010, 1111.4458.

[31]  Zhiping Xu,et al.  Geometry controls conformation of graphene sheets: membranes, ribbons, and scrolls. , 2010, ACS nano.

[32]  Bambi Hu,et al.  Suppression of thermal conductivity in graphene nanoribbons with rough edges , 2010, 1006.4879.

[33]  Huajian Gao,et al.  Tunable water channels with carbon nanoscrolls. , 2010, Small.

[34]  D. Galvão,et al.  Curved graphene nanoribbons: structure and dynamics of carbon nanobelts , 2010, Nanotechnology.

[35]  A. Mahmood,et al.  Production, properties and potential of graphene , 2010, 1002.0370.

[36]  Y. Kivshar,et al.  Surface solitons at the edges of graphene nanoribbons , 2010 .

[37]  Y. Kivshar,et al.  Vibrational Tamm states at the edges of graphene nanoribbons , 2010, 1001.3457.

[38]  Yuri S. Kivshar,et al.  Thermal conductivity of single-walled carbon nanotubes , 2009 .

[39]  A. Chuvilin,et al.  Chiral carbon nanoscrolls with a polygonal cross-section , 2009 .

[40]  K. Jiang,et al.  Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. , 2009, Nano letters.

[41]  Y. Kivshar,et al.  Localized modes in capped single-walled carbon nanotubes , 2009 .

[42]  Y. Kivshar,et al.  Discrete breathers in carbon nanotubes , 2008 .

[43]  V. Mochalin,et al.  Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds , 2007 .

[44]  R. Baughman,et al.  Hydrogen storage in carbon nanoscrolls: An atomistic molecular dynamics study , 2007 .

[45]  S. F. Braga,et al.  Prediction of the hydrogen storage capacity of carbon nanoscrolls , 2007 .

[46]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[47]  Jing Lu,et al.  Structural and Electronic Study of Nanoscrolls Rolled up by a Single Graphene Sheet , 2007 .

[48]  D. Galvão,et al.  Prediction of giant electroactuation for papyruslike carbon nanoscroll structures: First-principles calculations , 2006 .

[49]  H. Pan,et al.  Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet , 2005 .

[50]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[51]  W. Bollmann,et al.  Action of Graphite as a Lubricant , 1960, Nature.

[52]  Y. Xiang,et al.  Formation of carbon nanoscrolls from graphene nanoribbons: A molecular dynamics study , 2015 .

[53]  J. Dowling,et al.  Download details: , 2009 .