Radiation Detectors for Medical Applications

Contents. Preface S. Tavernier.-A Look at Medical Imaging Trends through the Eyes of a Medical Doctor S.S. Makeyev.- Introduction.-Historical Aspect of Nuclear Medicine.-Nowadays in Nuclear Medicine.-Perspectives of Nuclear Medicine Imaging.- New Trends in X-Ray CT Imaging R. Deych and E. Dolazza.- Present Status of X-Ray CT.-Detector Instrumentation in Medical CT.- Scintillator.-Photodetectors.-Future Evolution of Data Measurement Systems.- The Evolution of Spect- from Anger to Today and Beyond W.W. Moses, A. Gektin et al.- Introduction.-General Considerations.-SPECT.- The Anger Camera.-Optimizing Positioning in Anger Cameras.- Collimators.-Scintillators for Spect.- Recently Developed Scintillator Materials.- Conclusion.- New Trends in PET Detector Developments P.Lecoq.- Introduction.-PET Based Molecular Imaging.-Improving Sensitivity.- Improving Spatial and Temporal Resolution.-Multimodaility and Multifunctionality.-New Conversion Materials.- New Photodetectors.-Highly Integrated and Low Noise Electronics.-Intelligent and Triggerable Data Acquisition Systems.-Simulation Software.-New Reconstruction and Visualisation Algorithms.-Conclusion.-Semiconductor Detectors in Radiation Medicine: Radiotherapy and related Applcations A.B. Rosenfeld.- Introduction.-Integral Semiconductor Dosimetry in Radiation Therapy.-Mosfet Detectors.-Semiconductor Radiation Detectors in Hadron Therapy.- Semiconductor Radiation Detectors for Microdosimetry in Radiation Therapy.-Application of Scintillator Based Detector in Radiation Therapy.-Conclusion.-First Results with the ClearPET small Animal PET Scanners S. Tavernier et al.- Introduction.-Description of the ClearPET Scanners.-Measured Performance and Comparison with Monte Carlo Simulations.- Image Reconstruction.-Conclusions.-Investigation of Crystal Identification Methods for ClearPETTM Phoswich Detector D. Wisniewski et al.- Introduction.-Measurement Setup.-Crystal Identification Methods.- Experimental Results.- Conclusions.- Directions in Scintillation Materials Research P. Dorenbos.- Introduction.-Historic Developments.- Fundamental Limits.- Directions in Scintillation Materials Research.-Summary and Conclusions.-Scintillation Detectors for Medical and Biology Applications: Materials, Design and Light Collection Conditions M. Globus, B. Grinyov.- Introduction.-2. Some Features and Regularities of Light Collection in Scintillators.- Medical Diagnostics Instrumentation.- Thin Scintillation Films for Biological Microtomography. Conclusions.- Current and Future Use of LSO: CE Scintillators in PET C.L. Melcher et al.- Introduction.-Physical Properties.- Scintillation Properties.-Crystal Growth.-Detector Design.- Future Uses of LSO: CE in PET.-Conclusion.-Inorganic Scintillators in Positron Emission Tomography C.W.E. van Eijk.- Introduction.-Inorganic Scintillators.- Position Resolution and Depth of Interaction.-Coincidence-Time Resolution, Random Coincidences, Time of Flight and Dead Time.-Conclusion.-Crystal Fibers and thin Films for Imaging Applications C. Pedrini and C. Dujardin.-. Introduction.-Single Crystal Fibers.- Scintillating Thin Films Deposited on Substrate.- Scintillation thin Layers created by Irradiation.-Conclusions. Non-Proportionality and Energy Resolution of Scintillation Detectors M. Moszynski.-Introduction.-Outline of the Problem.Study of Energy Resolution and Non-Proportionality.- Discussion and Conclusions.