Rational Cones and Commutations
暂无分享,去创建一个
[1] Seymour Ginsburg,et al. AFL with the Semilinear Property , 1971, J. Comput. Syst. Sci..
[2] Michel Latteux,et al. Languages albébriques dominés par des langages unaires , 1981, Inf. Control..
[3] Philippe Gohon. An Algorithm to Decide Whether a Rational Subset of N^k is Recognizable , 1985, Theor. Comput. Sci..
[4] Emo Welzl,et al. Trace Languages Defined by Regular String Languages , 1986, RAIRO Theor. Informatics Appl..
[5] Juha Kortelainen,et al. The conjecture of Fliess on commutative context-free languages , 1989, JACM.
[6] Yves Métivier. On Recognizable Subsets of Free Partially Commutative Monoids , 1988, Theor. Comput. Sci..
[7] Pierre Cartier,et al. Problemes combinatoires de commutation et rearrangements , 1969 .
[8] Samuel Eilenberg,et al. Review of "Algebraic and automata-theoretic properties of formal languages" by Seymour Ginsburg. North Holland, 1975. , 1976, SIGA.
[9] M. Clerbout,et al. Semi-commutations , 1987, Inf. Comput..
[10] A. Mazurkiewicz. Concurrent Program Schemes and their Interpretations , 1977 .
[11] Christine Duboc. Commutations dans les monoïdes libres : un cadre théorique pour l'étude du parallélisme , 1986 .
[12] Michel Latteux,et al. 2-Asynchronous Automata , 1988, Theor. Comput. Sci..
[13] Michel Latteux,et al. Cônes rationnels commutatifs , 1979, J. Comput. Syst. Sci..
[14] Paavo Turakainen. On some bounded semiAFLs and AFLs , 1981, Inf. Sci..
[15] Edward Ochmanski,et al. Regular behaviour of concurrent systems , 1985, Bull. EATCS.
[16] Yves Roos,et al. Contribution a l'étude des fonctions de commutation partielle , 1989 .
[17] Seymour Ginsburg,et al. Algebraic and Automata Theoretic Properties of Formal Languages , 1975 .
[18] Juha Kortelainen. Every Commutative Quasirational Language is Regular , 1986, RAIRO Theor. Informatics Appl..
[19] Takeshi Oshiba. On Permuting Letters of Words in Context-Free Languages , 1972, Inf. Control..
[20] I. N. Sneddon,et al. Theory Of Automata , 1969 .
[21] Juha Kortelainen. A result concerning the trios generated by commutative slip-languages , 1982, Discret. Appl. Math..
[22] Antonio Restivo,et al. Rational Languages and the Burnside Problem , 1985, Theor. Comput. Sci..
[23] Giancarlo Mauri,et al. Unambiguous regular trace languages , 1985 .
[24] Takashi Yokomori,et al. Semi-Linearity, Parikh-Boundedness and Tree-Adjunct Languages , 1983, Information Processing Letters.
[25] Wieslaw Zielonka,et al. Notes on Finite Asynchronous Automata , 1987, RAIRO Theor. Informatics Appl..
[26] Seymour Ginsburg,et al. The mathematical theory of context free languages , 1966 .
[27] Robert Cori,et al. Automates et Commutations Partielles , 1985, RAIRO Theor. Informatics Appl..
[28] Michel Latteux,et al. Cônes Rationnels Commutativement Clos , 1977, RAIRO Theor. Informatics Appl..
[29] Michel Latteux,et al. Partial Commutations and Faithful Rational Transductions , 1984, Theor. Comput. Sci..
[30] S. Ginsburg,et al. Semigroups, Presburger formulas, and languages. , 1966 .
[31] Mireille Clerbout. Compositions De Fonctions De Commutation Partielle , 1989, RAIRO Theor. Informatics Appl..
[32] Michel Latteux,et al. Commutative One-Counter Languages are Regular , 1984, J. Comput. Syst. Sci..
[33] Jacques Sakarovitch,et al. Recent Results in the Theory of Rational Sets , 1986, MFCS.
[34] Yves Métivier,et al. Recognizable Subsets of Some Partially Abelian Monoids , 1985, Theor. Comput. Sci..
[35] J. Beauquier,et al. VERY SMALL FAMILIES OF ALGEBRAIC NONRATIONAL LANGUAGES , 1980 .
[36] Hermann A. Maurer. The Solution of a Problem by Ginsburg , 1971, Inf. Process. Lett..
[37] Jacques Sakarovitch,et al. On Regular Trace Languages , 1987, Theor. Comput. Sci..
[38] M. Schützenberger,et al. Rational sets in commutative monoids , 1969 .
[39] Christine Duboc,et al. Some Properties of Commutation in Free Partially Commutative Monoids , 1985, Inf. Process. Lett..
[40] Dominique Perrin. Words over a Partially Commutative Alphabet , 1985 .
[41] Antoni W. Mazurkiewicz,et al. Traces, Histories, Graphs: Instances of a Process Monoid , 1984, International Symposium on Mathematical Foundations of Computer Science.
[42] David Haussler,et al. Conditions Enforcing Regularity of Context-Free Languages , 1982, ICALP.
[43] Grzegorz Rozenberg,et al. Theory of Traces , 1988, Theor. Comput. Sci..
[44] Jean Berstel,et al. Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.
[45] Michel Latteux,et al. On Commutative Context-Free Languages , 1987, J. Comput. Syst. Sci..