Rational Cones and Commutations

This survey presents some results concerning total commutations, partial commutations and semi-commutations in connection with the families of rational and algebraic languages and more generaly with (faithful) rational cones.

[1]  Seymour Ginsburg,et al.  AFL with the Semilinear Property , 1971, J. Comput. Syst. Sci..

[2]  Michel Latteux,et al.  Languages albébriques dominés par des langages unaires , 1981, Inf. Control..

[3]  Philippe Gohon An Algorithm to Decide Whether a Rational Subset of N^k is Recognizable , 1985, Theor. Comput. Sci..

[4]  Emo Welzl,et al.  Trace Languages Defined by Regular String Languages , 1986, RAIRO Theor. Informatics Appl..

[5]  Juha Kortelainen,et al.  The conjecture of Fliess on commutative context-free languages , 1989, JACM.

[6]  Yves Métivier On Recognizable Subsets of Free Partially Commutative Monoids , 1988, Theor. Comput. Sci..

[7]  Pierre Cartier,et al.  Problemes combinatoires de commutation et rearrangements , 1969 .

[8]  Samuel Eilenberg,et al.  Review of "Algebraic and automata-theoretic properties of formal languages" by Seymour Ginsburg. North Holland, 1975. , 1976, SIGA.

[9]  M. Clerbout,et al.  Semi-commutations , 1987, Inf. Comput..

[10]  A. Mazurkiewicz Concurrent Program Schemes and their Interpretations , 1977 .

[11]  Christine Duboc Commutations dans les monoïdes libres : un cadre théorique pour l'étude du parallélisme , 1986 .

[12]  Michel Latteux,et al.  2-Asynchronous Automata , 1988, Theor. Comput. Sci..

[13]  Michel Latteux,et al.  Cônes rationnels commutatifs , 1979, J. Comput. Syst. Sci..

[14]  Paavo Turakainen On some bounded semiAFLs and AFLs , 1981, Inf. Sci..

[15]  Edward Ochmanski,et al.  Regular behaviour of concurrent systems , 1985, Bull. EATCS.

[16]  Yves Roos,et al.  Contribution a l'étude des fonctions de commutation partielle , 1989 .

[17]  Seymour Ginsburg,et al.  Algebraic and Automata Theoretic Properties of Formal Languages , 1975 .

[18]  Juha Kortelainen Every Commutative Quasirational Language is Regular , 1986, RAIRO Theor. Informatics Appl..

[19]  Takeshi Oshiba On Permuting Letters of Words in Context-Free Languages , 1972, Inf. Control..

[20]  I. N. Sneddon,et al.  Theory Of Automata , 1969 .

[21]  Juha Kortelainen A result concerning the trios generated by commutative slip-languages , 1982, Discret. Appl. Math..

[22]  Antonio Restivo,et al.  Rational Languages and the Burnside Problem , 1985, Theor. Comput. Sci..

[23]  Giancarlo Mauri,et al.  Unambiguous regular trace languages , 1985 .

[24]  Takashi Yokomori,et al.  Semi-Linearity, Parikh-Boundedness and Tree-Adjunct Languages , 1983, Information Processing Letters.

[25]  Wieslaw Zielonka,et al.  Notes on Finite Asynchronous Automata , 1987, RAIRO Theor. Informatics Appl..

[26]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[27]  Robert Cori,et al.  Automates et Commutations Partielles , 1985, RAIRO Theor. Informatics Appl..

[28]  Michel Latteux,et al.  Cônes Rationnels Commutativement Clos , 1977, RAIRO Theor. Informatics Appl..

[29]  Michel Latteux,et al.  Partial Commutations and Faithful Rational Transductions , 1984, Theor. Comput. Sci..

[30]  S. Ginsburg,et al.  Semigroups, Presburger formulas, and languages. , 1966 .

[31]  Mireille Clerbout Compositions De Fonctions De Commutation Partielle , 1989, RAIRO Theor. Informatics Appl..

[32]  Michel Latteux,et al.  Commutative One-Counter Languages are Regular , 1984, J. Comput. Syst. Sci..

[33]  Jacques Sakarovitch,et al.  Recent Results in the Theory of Rational Sets , 1986, MFCS.

[34]  Yves Métivier,et al.  Recognizable Subsets of Some Partially Abelian Monoids , 1985, Theor. Comput. Sci..

[35]  J. Beauquier,et al.  VERY SMALL FAMILIES OF ALGEBRAIC NONRATIONAL LANGUAGES , 1980 .

[36]  Hermann A. Maurer The Solution of a Problem by Ginsburg , 1971, Inf. Process. Lett..

[37]  Jacques Sakarovitch,et al.  On Regular Trace Languages , 1987, Theor. Comput. Sci..

[38]  M. Schützenberger,et al.  Rational sets in commutative monoids , 1969 .

[39]  Christine Duboc,et al.  Some Properties of Commutation in Free Partially Commutative Monoids , 1985, Inf. Process. Lett..

[40]  Dominique Perrin Words over a Partially Commutative Alphabet , 1985 .

[41]  Antoni W. Mazurkiewicz,et al.  Traces, Histories, Graphs: Instances of a Process Monoid , 1984, International Symposium on Mathematical Foundations of Computer Science.

[42]  David Haussler,et al.  Conditions Enforcing Regularity of Context-Free Languages , 1982, ICALP.

[43]  Grzegorz Rozenberg,et al.  Theory of Traces , 1988, Theor. Comput. Sci..

[44]  Jean Berstel,et al.  Transductions and context-free languages , 1979, Teubner Studienbücher : Informatik.

[45]  Michel Latteux,et al.  On Commutative Context-Free Languages , 1987, J. Comput. Syst. Sci..