Minimum Distance and Trapping Set Analysis of Protograph-Based LDPC Convolutional Codes

Low-density parity-check (LDPC) convolutional codes have been shown to be capable of achieving capacity-approaching performance with iterative message-passing decoding. In the first part of this paper, using asymptotic methods to obtain lower bounds on the free distance to constraint length ratio, we show that several ensembles of regular and irregular LDPC convolutional codes derived from protograph-based LDPC block codes have the property that the free distance grows linearly with respect to the constraint length, i.e., the ensembles are asymptotically good. In particular, we show that the free distance to constraint length ratio of the LDPC convolutional code ensembles exceeds the minimum distance to block length ratio of the corresponding LDPC block code ensembles. A large free distance growth rate indicates that codes drawn from the ensemble should perform well at high signal-to-noise ratios under maximum-likelihood decoding. When suboptimal decoding methods are employed, there are many factors that affect the performance of a code. Recently, it has been shown that so-called trapping sets are a significant factor affecting decoding failures of LDPC codes over the additive white Gaussian noise channel with iterative message-passing decoding. In the second part of this paper, we study the trapping sets of the asymptotically good protograph-based LDPC convolutional codes considered earlier. By extending the theory presented in part one and using similar bounding techniques, we show that the size of the smallest non-empty trapping set grows linearly with the constraint length for these ensembles.

[1]  Gerhard Fettweis,et al.  Asymptotically good LDPC convolutional codes with AWGN channel thresholds close to the Shannon limit , 2010, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.

[2]  Dariush Divsalar,et al.  Accumulate repeat accumulate codes , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[3]  Michael Lentmaier,et al.  Distance Bounds for an Ensemble of LDPC Convolutional Codes , 2007, IEEE Transactions on Information Theory.

[4]  Gerhard Fettweis,et al.  Tail-Biting LDPC Convolutional Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[5]  Rüdiger L. Urbanke,et al.  Threshold saturation on BMS channels via spatial coupling , 2010, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.

[6]  Lara Dolecek,et al.  GEN03-6: Investigation of Error Floors of Structured Low-Density Parity-Check Codes by Hardware Emulation , 2006, IEEE Globecom 2006.

[7]  Dariush Divsalar,et al.  Capacity-approaching protograph codes , 2009, IEEE Journal on Selected Areas in Communications.

[8]  Gerd Richter,et al.  Irregular Low-Density Parity-Check Convolutional Codes Based on Protographs , 2006, 2006 IEEE International Symposium on Information Theory.

[9]  David J. C. MacKay,et al.  Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check cCodes , 2003, MFCSIT.

[10]  J. Thorpe Low-Density Parity-Check (LDPC) Codes Constructed from Protographs , 2003 .

[11]  Daniel J. Costello,et al.  A Comparison of ARA- and Protograph-Based LDPC Block and Convolutional Codes , 2007, 2007 Information Theory and Applications Workshop.

[12]  Niclas Wiberg,et al.  Codes and Decoding on General Graphs , 1996 .

[13]  Ali Emre Pusane,et al.  A Comparison Between LDPC Block and Convolutional Codes , 2006 .

[14]  Rüdiger L. Urbanke,et al.  Efficient encoding of low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[15]  Dariush Divsalar,et al.  Construction of Protograph LDPC Codes with Linear Minimum Distance , 2006, 2006 IEEE International Symposium on Information Theory.

[16]  Michael Lentmaier,et al.  Implementation aspects of LDPC convolutional codes , 2008, IEEE Transactions on Communications.

[17]  Michael Lentmaier,et al.  To the Theory of Low-Density Convolutional Codes. II , 2001, Probl. Inf. Transm..

[18]  G. Solomon,et al.  A Connection Between Block and Convolutional Codes , 1979 .

[19]  Rüdiger L. Urbanke,et al.  Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC , 2010, IEEE Transactions on Information Theory.

[20]  D. Costello,et al.  Approaching capacity with asymptotically regular LDPC codes , 2009, 2009 Information Theory and Applications Workshop.

[21]  E. Gilbert A comparison of signalling alphabets , 1952 .

[22]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[23]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[24]  Kamil Sh. Zigangirov,et al.  Time-varying periodic convolutional codes with low-density parity-check matrix , 1999, IEEE Trans. Inf. Theory.

[25]  Daniel J. Costello Free distance bounds for convolutional codes , 1974, IEEE Trans. Inf. Theory.

[26]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[27]  Daniel J. Costello,et al.  Distance Bounds for Periodically Time-Varying and Tail-Biting LDPC Convolutional Codes , 2010, IEEE Transactions on Information Theory.

[28]  Michael Lentmaier,et al.  Iterative Decoding Threshold Analysis for LDPC Convolutional Codes , 2010, IEEE Transactions on Information Theory.

[29]  P. Vontobel,et al.  Constructions of regular and irregular LDPC codes using Ramanujan graphs and ideas from Margulis , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[30]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[31]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[32]  Shashi Kiran Chilappagari,et al.  Error Floors of LDPC Codes on the Binary Symmetric Channel , 2006, 2006 IEEE International Conference on Communications.

[33]  Ali Emre Pusane,et al.  Deriving Good LDPC Convolutional Codes from LDPC Block Codes , 2010, IEEE Transactions on Information Theory.

[34]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[35]  Emina Soljanin,et al.  Asymptotic Spectra of Trapping Sets in Regular and Irregular LDPC Code Ensembles , 2007, IEEE Transactions on Information Theory.

[36]  Ali Emre Pusane,et al.  Construction of Irregular LDPC Convolutional Codes with Fast Encoding , 2006, 2006 IEEE International Conference on Communications.

[37]  Dariush Divsalar,et al.  Ensemble Weight Enumerators for Protograph LDPC Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[38]  T. Richardson,et al.  Multi-Edge Type LDPC Codes , 2004 .

[39]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[40]  Lara Dolecek,et al.  Predicting error floors of structured LDPC codes: deterministic bounds and estimates , 2009, IEEE Journal on Selected Areas in Communications.

[41]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[42]  Jeremy Thorpe,et al.  Enumerators for protograph ensembles of LDPC codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[43]  Daniel J. Costello,et al.  A construction for irregular low density parity check convolutional codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[44]  David G. M. Mitchell,et al.  Free distance bounds for protograph-based regular LDPC convolutional codes , 2008, 2008 5th International Symposium on Turbo Codes and Related Topics.

[45]  Ali Emre Pusane,et al.  Pseudocodeword Performance Analysis for LDPC Convolutional Codes , 2006, IEEE Transactions on Information Theory.

[46]  Jack K. Wolf,et al.  On Tail Biting Convolutional Codes , 1986, IEEE Trans. Commun..

[47]  William E. Ryan,et al.  Enumerators for Protograph-Based Ensembles of LDPC and Generalized LDPC Codes , 2011, IEEE Transactions on Information Theory.

[48]  Shashi Kiran Chilappagari,et al.  Eliminating trapping sets in low-density parity-check codes by using Tanner graph covers , 2008, IEEE Transactions on Information Theory.