Determination of the absolute configurations of flexible molecules: synthesis and theoretical simulation of electronic circular dichroism/optical rotation of some pyrrolo[2,3-b]indoline alkaloids--a case study.

The paper describes the synthesis and chiroptical properties of (-)-1,2,3,3a,8,8a,-hexahydro-1,3a-dimethyl-pyrrolo[2,3-b]indole, (-)-1, one of the monomeric units of many flexible polypyrroloindoline alkaloids and (-)-chimonanthine, (-)-2. The aim of this investigation is to show that, under certain circumstances, namely, with molecules for which the sign and order of magnitude of [alpha](D) are determined by the lowest-energy valence-shell transitions (referred to as class (a) molecules), a small basis set calculation of chiroptical properties provides reliable results, and that such a treatment can be employed for absolute configurational assignment of larger oligomers, for which the increased flexibility renders the analysis as formidable task. Actually, as the aforementioned two molecules belong to class (a) systems, a TDDFT/B3LYP/6-31G* calculation of the ECD and ORD spectra gives rise to a more than satisfactory simulation of these data, assuming the reported absolute configurations. In other words, the use of the TDDFT/B3LYP method with the small 6-31G* basis set enables one to treat large and flexible molecules such as (-)-2 (52 atoms and 6 conformers) by usage of a simple PC in about 2 weeks. This protocol demonstrates that an ab initio prediction of ECD/ORD spectra results in reliable assignments of absolute configuration of even relatively large natural products, thus economizing computation time.

[1]  G. Vane,et al.  The circular dichroism and absorption spectra of alkaloids containing the aniline chromophore. The absolute configuration of calycanthine , 1966 .

[2]  J. Daly,et al.  Steroidal alkaloids (batrachotoxins and 4β-hydroxybatrachotoxins), “indole alkaloids” (calycanthine and chimonanthine) and a piperidinyldipyridin , 1983 .

[3]  R. Anton,et al.  Dimeric alkaloids fromPsychotria forsteriana , 1992 .

[4]  Nunes,et al.  Pyrrolidinoindoline Alkaloids from Psychotria colorata1 , 1998, Journal of natural products.

[5]  K. Nakanishi,et al.  Circular dichroism studies of bisindole Vinca alkaloids , 1998 .

[6]  L. Overman,et al.  Direct Stereo- and Enantiocontrolled Synthesis of Vicinal Stereogenic Quaternary Carbon Centers. Total Syntheses of meso- and (−)-Chimonanthine and (+)-Calycanthine , 1999 .

[7]  C. Christophersen,et al.  Chapter Two - Naturally Occurring Cyclotryptophans and Cyclotryptamines , 1999 .

[8]  M. Frisch,et al.  Hartree−Fock and Density Functional Theory ab Initio Calculation of Optical Rotation Using GIAOs: Basis Set Dependence , 2000 .

[9]  A. Nishida,et al.  An efficient synthesis of optically active physostigmine from tryptophan via alkylative cyclization. , 2000, Organic letters.

[10]  J. Tomasi,et al.  Prediction of optical rotation using density functional theory: 6,8-dioxabicyclo[3.2.1]octanes , 2000 .

[11]  Stearns,et al.  Enantioselective Construction of Vicinal Stereogenic Quaternary Centers by Dialkylation: Practical Total Syntheses of (+)- and meso-Chimonanthine. , 2000, Angewandte Chemie.

[12]  P. Åstrand,et al.  Zero-point vibrational effects on optical rotation , 2001 .

[13]  M. Frisch,et al.  Calculation of Optical Rotation Using Density Functional Theory , 2001 .

[14]  S. Grimme Calculation of frequency dependent optical rotation using density functional response theory , 2001 .

[15]  Prasad L Polavarapu,et al.  Optical rotation: recent advances in determining the absolute configuration. , 2002, Chirality.

[16]  J. Autschbach,et al.  Calculating molecular electric and magnetic properties from time-dependent density functional response theory , 2002 .

[17]  M. Frisch,et al.  Determination of absolute configuration using optical rotation calculated using density functional theory. , 2002, Organic letters.

[18]  S. Grimme,et al.  An improved method for density functional calculations of the frequency-dependent optical rotation , 2002 .

[19]  E. Baerends,et al.  Chiroptical properties from time-dependent density functional theory. II. Optical rotations of small to medium sized organic molecules , 2002 .

[20]  J. Tomasi,et al.  Polarizable Continuum Model (PCM) Calculations of Solvent Effects on Optical Rotations of Chiral Molecules , 2002 .

[21]  Trygve Helgaker,et al.  Optical rotation studied by density-functional and coupled-cluster methods , 2002 .

[22]  P. Polavarapu The absolute configuration of bromochlorofluoromethane. , 2002, Angewandte Chemie.

[23]  L. Verotta,et al.  Synthesis and antinociceptive activity of chimonanthines and pyrrolidinoindoline-type alkaloids. , 2002, Bioorganic & medicinal chemistry.

[24]  L. Overman,et al.  Enantioselective total synthesis of quadrigemine C and psycholeine. , 2002, Journal of the American Chemical Society.

[25]  M. Frisch,et al.  Ab initio prediction of optical rotation: comparison of density functional theory and Hartree-Fock methods for three 2,7,8-trioxabicyclo[3.2.1]octanes. , 2002, Chirality.

[26]  Alexander Wittkopp,et al.  The first enantiomerically pure [n]triangulanes and analogues: sigma-[n]helicenes with remarkable features. , 2002, Chemistry.

[27]  S. Grimme,et al.  Ab initio calculations for the optical rotations of conformationally flexible molecules: a case study on six-, seven-, and eight-membered fluorinated cycloalkanol esters. , 2002, Chirality.

[28]  Evert Jan Baerends,et al.  Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules , 2002 .

[29]  E. Giorgio,et al.  Calculation of the gas phase specific rotation of (S)-propylene oxide at 355 nm , 2003 .

[30]  Ana G. Petrovic,et al.  Intrinsic rotation and molecular structure. , 2003, Chirality.

[31]  M. Frisch,et al.  Determination of absolute configuration using ab initio calculation of optical rotation. , 2003, Chirality.

[32]  A. Nishida,et al.  An efficient synthetic approach to optically active β-carboline derivatives via Pictet–Spengler reaction promoted by trimethylchlorosilane , 2003 .

[33]  Philip J. Stephens,et al.  Coupled-cluster calculations of optical rotation , 2003 .

[34]  Assignment of the molecular absolute configuration through the ab initio Hartree-Fock calculation of the optical rotation: can the circular dichroism data help in reducing basis set requirements? , 2003, The Journal of organic chemistry.

[35]  Stefan Grimme,et al.  Systematic Investigation of Modern Quantum Chemical Methods to Predict Electronic Circular Dichroism Spectra , 2003 .

[36]  M. Frisch,et al.  Determination of absolute configuration using concerted ab Initio DFT calculations of electronic circular dichroism and optical rotation: bicyclo[3.3.1]nonane diones. , 2004, The Journal of organic chemistry.

[37]  E. Giorgio,et al.  Non-empirical assignment of the absolute configuration of (-)-naringenin, by coupling the exciton analysis of the circular dichroism spectrum and the ab initio calculation of the optical rotatory power. , 2004, Organic & biomolecular chemistry.

[38]  M. Pecul,et al.  Density functional theory calculation of electronic circular dichroism using London orbitals , 2004 .

[39]  T Daniel Crawford,et al.  Coupled cluster calculations of optical rotatory dispersion of (S)-methyloxirane. , 2004, The Journal of chemical physics.

[40]  P. Stephens,et al.  Determination of absolute configuration using density functional theory calculation of optical rotation: chiral alkanes. , 2004, The Journal of organic chemistry.

[41]  P. Schreiner,et al.  Structure-property relationships of prototypical chiral compounds: Case studies , 2004 .

[42]  T. Liljefors,et al.  A stereochemical anomaly: the cyclised (R)-AMPA analogue (R)-3-hydroxy-4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-5-carboxylic acid [(R)-5-HPCA] resembles (S)-AMPA at glutamate receptors. , 2004, Organic & biomolecular chemistry.

[43]  M. Pecul,et al.  Conformational Effects on the Optical Rotation of Alanine and Proline , 2004 .

[44]  Trygve Helgaker,et al.  Density-functional theory calculations of optical rotatory dispersion in the nonresonant and resonant frequency regions. , 2004, The Journal of chemical physics.

[45]  E. Giorgio,et al.  Assignment of the absolute configuration of large molecules by ab initio calculation of the rotatory power within a small basis set scheme: the case of some biologically active natural products , 2004 .

[46]  M. Frisch,et al.  Determination of the absolute configuration of [3(2)](1,4)barrelenophanedicarbonitrile using concerted time-dependent density functional theory calculations of optical rotation and electronic circular dichroism. , 2004, Journal of the American Chemical Society.

[47]  E. Giorgio,et al.  Ab initio calculation of optical rotatory dispersion (ORD) curves: a simple and reliable approach to the assignment of the molecular absolute configuration. , 2004, Journal of the American Chemical Society.

[48]  K. Ruud,et al.  Optical rotation calculation of a highly flexible molecule: the case of paraconic acid. , 2005, The journal of physical chemistry. A.

[49]  Assignment of the absolute configuration of (+)-diplopyrone, the main phytotoxin produced by Diplodia mutila, the pathogen of the cork oak decline, by a nonempirical analysis of its chiroptical properties. , 2005, The Journal of organic chemistry.

[50]  J. Autschbach,et al.  Calculation of optical rotation with time-periodic magnetic-field-dependent basis functions in approximate time-dependent density-functional theory. , 2005, The Journal of chemical physics.

[51]  Ana G. Petrovic,et al.  Absolute configuration of C2-symmetric spiroselenurane: 3,3,3',3'-tetramethyl-1,1'-spirobi[3 H,2,1]benzoxaselenole. , 2005, Chemistry.

[52]  K. Ruud,et al.  The importance of molecular vibrations: the sign change of the optical rotation of methyloxirane. , 2005, Angewandte Chemie.

[53]  E. Giorgio,et al.  Theoretical simulation of the electronic circular dichroism spectrum of calicheamicin. , 2005, Bioorganic & medicinal chemistry.

[54]  T Daniel Crawford,et al.  Ab initio calculation of optical rotation in (P)-(+)-[4]triangulane. , 2005, Journal of the American Chemical Society.

[55]  M. Pecul,et al.  Polarizable continuum model study of solvent effects on electronic circular dichroism parameters. , 2005, The Journal of chemical physics.

[56]  Ana G. Petrovic,et al.  Absolute configuration and predominant conformations of 1,1-dimethyl-2-phenylethyl phenyl sulfoxide. , 2005, Organic & biomolecular chemistry.

[57]  E. Giorgio,et al.  Determination of the absolute configuration of flexible molecules by ab initio ORD calculations: a case study with cytoxazones and isocytoxazones. , 2005, The Journal of organic chemistry.

[58]  P. Polavarapu Kramers-Kronig transformation for optical rotatory dispersion studies. , 2005, The journal of physical chemistry. A.

[59]  P. Wipf,et al.  Assignment of the absolute configuration of [n]-ladderanes by TD-DFT optical rotation calculations. , 2005, Chirality.

[60]  M. Frisch,et al.  Determination of absolute configurations of chiral molecules using ab initio time-dependent Density Functional Theory calculations of optical rotation: how reliable are absolute configurations obtained for molecules with small rotations? , 2005, Chirality.

[61]  J. Autschbach,et al.  Magnitude of zero-point vibrational corrections to optical rotation in rigid organic molecules: a time-dependent density functional study. , 2005, The journal of physical chemistry. A.

[62]  P. Wipf,et al.  Systematic assignment of the configuration of flexible natural products by spectroscopic and computational methods: the bistramide C analysis. , 2005, Organic letters.

[63]  T. Daniel Crawford,et al.  Ab initio calculation of molecular chiroptical properties , 2006 .

[64]  P. Stephens,et al.  Determination of absolute configuration using density functional theory calculations of optical rotation and electronic circular dichroism: chiral alkenes. , 2006, The Journal of organic chemistry.

[65]  G. Schatz,et al.  Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules. , 2006, The journal of physical chemistry. A.