Near-self-imaging cavity for three-mode optoacoustic parametric amplifiers using silicon microresonators.

Three-mode optoacoustic parametric amplifiers (OAPAs), in which a pair of photon modes are strongly coupled to an acoustic mode, provide a general platform for investigating self-cooling, parametric instability and very sensitive transducers. Their realization requires an optical cavity with tunable transverse modes and a high quality-factor mirror resonator. This paper presents the design of a table-top OAPA based on a near-self-imaging cavity design, using a silicon torsional microresonator. The design achieves a tuning coefficient for the optical mode spacing of 2.46  MHz/mm. This allows tuning of the mode spacing between amplification and self-cooling regimes of the OAPA device. Based on demonstrated resonator parameters (frequencies ∼400  kHz and quality-factors ∼7.5×10(5) we predict that the OAPA can achieve parametric instability with 1.6 μW of input power and mode cooling by a factor of 1.9×10(4) with 30 mW of input power.

[1]  Observation of three-mode parametric instability , 2013, 1303.4561.

[2]  David Blair,et al.  Radiation pressure excitation of test mass ultrasonic modes via three mode opto-acoustic interactions in a suspended Fabry-Perot cavity , 2013 .

[3]  Mariusz Martyniuk,et al.  High quality factor mg-scale silicon mechanical resonators for 3-mode optoacoustic parametric amplifiers , 2013 .

[4]  A. Tünnermann,et al.  Investigation of mechanical losses of thin silicon flexures at low temperatures , 2010, 1003.2893.

[5]  G. Prodi,et al.  Ultralow-dissipation micro-oscillator for quantum optomechanics , 2012, 1208.6161.

[6]  S. Vyatchanin Parametric oscillatory instability in laser gravitational antennas , 2012 .

[7]  Warwick P. Bowen,et al.  Cavity optomechanical magnetometer. , 2011, Physical review letters.

[8]  T. Carmon,et al.  Observation of spontaneous Brillouin cooling , 2011, Nature Physics.

[9]  Tal Carmon,et al.  Stimulated optomechanical excitation of surface acoustic waves in a microdevice. , 2011, Nature communications.

[10]  Lisa Barsotti,et al.  Damping parametric instabilities in future gravitational wave detectors by means of electrostatic actuators , 2011, 1704.03587.

[11]  C. Fabre,et al.  Frequency doubling of low power images using a self-imaging cavity. , 2010, Optics express.

[12]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[13]  J. Khurgin Phonon lasers gain a sound foundation , 2010 .

[14]  J. Khurgin Viewpoint: Phonon lasers gain a sound foundation , 2010 .

[15]  D. Vick,et al.  Nanotorsional resonator torque magnetometry , 2009, 0911.2517.

[16]  L. Barsotti,et al.  A general approach to optomechanical parametric instabilities , 2009, 0910.2716.

[17]  Kerry J. Vahala,et al.  Phonon laser action in a tunable, two-level system , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[18]  T. Kippenberg,et al.  Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer. , 2009, Physical review letters.

[19]  H. Miao,et al.  Three-mode optoacoustic parametric amplifier: a tool for macroscopic quantum experiments. , 2009, Physical review letters.

[20]  Thomas W. Kenny,et al.  Multimode thermoelastic dissipation , 2009 .

[21]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[22]  Andreas Tünnermann,et al.  High mechanical Q-factor measurements on silicon bulk samples , 2008 .

[23]  K. Uhlig DRY DILUTION REFRIGERATOR WITH HIGH COOLING POWER , 2008 .

[24]  H. Miao,et al.  Three-mode optoacoustic parametric interactions with a coupled cavity , 2008, 0802.3534.

[25]  H. Miao,et al.  Observation of three-mode parametric interactions in long optical cavities , 2008, 0801.1150.

[26]  L. P. Hunt,et al.  Handbook of Semiconductor Silicon Technology , 2007 .

[27]  Edith Innerhofer,et al.  An all-optical trap for a gram-scale mirror. , 2006, Physical review letters.

[28]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[29]  M. Fejer,et al.  Titania-doped tantala/silica coatings for gravitational-wave detection , 2006, gr-qc/0610004.

[30]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[31]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[32]  D. Blair,et al.  Multiple modes contributions to parametric instabilities in advanced laser interferometer gravitational wave detectors , 2006 .

[33]  Y. Mita,et al.  Contour lithography methods for DRIE fabrication of nanometre–millimetre-scale coexisting microsystems , 2006 .

[34]  L. Pinard,et al.  High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. , 2006, Physical review letters.

[35]  K. Vahala,et al.  Radiation-pressure induced mechanical oscillation of an optical microcavity , 2005, EQEC '05. European Quantum Electronics Conference, 2005..

[36]  M. M. Fejer,et al.  Mechanical Dissipation in Silicon Flexures , 2005, gr-qc/0504134.

[37]  D. Blair,et al.  Parametric instabilities and their control in advanced interferometer gravitational-wave detectors. , 2005, Physical review letters.

[38]  S. Strigin,et al.  Analysis of parametric oscillatory instability in power recycled LIGO interferometer , 2002, Proceedings of CAOL 2005. Second International Conference on Advanced Optoelectronics and Lasers, 2005..

[39]  Peter Vettiger,et al.  Temperature dependence of the force sensitivity of silicon cantilevers , 2004 .

[40]  Nadeem Hasan Rizvi,et al.  UV laser micromachining of silicon, indium phosphide and lithium niobate for telecommunications applications , 2003, SPIE OPTO-Ireland.

[41]  Yuriy Platonov,et al.  Fabry-Perot interferometer in x-rays , 2002, SPIE Optics + Photonics.

[42]  S. Strigin,et al.  Parametric oscillatory instability in Fabry-Perot interferometer , 2001, gr-qc/0107079.

[43]  P. Cohadon,et al.  Cooling of a Mirror by Radiation Pressure , 1999, quant-ph/9903094.

[44]  D T Wei,et al.  Ion beam interference coating for ultralow optical loss. , 1989, Applied optics.

[45]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[46]  J. Arnaud,et al.  Degenerate optical cavities. , 1969, Applied optics.