Neutral production of hydrogen isocyanide (HNC) and hydrogen cyanide (HCN) in Titan's upper atmosphere

Following the first detection of hydrogen isocyanide (HNC) in Titan's atmosphere, we have devised a new neutral chemical scheme for hydrogen cyanide (HCN) and hydrogen isocyanide (HNC) in the upper atmosphere of Titan. To improve the chemistry of HNC and HCN, a careful review of the literature has been performed to retrieve critical reaction rates and to evaluate their uncertainty factors. We have also estimated the reaction rates of 48 new reactions using simple capture theory. Our photochemical model gives abundances of HNC and HCN in reasonable agreement with observations. An uncertainty propagation study shows large uncertainties for HNC. A global sensitivity analysis pinpoints some key reactions to study as a priority to improve the predictivity of the model. In particular, our knowledge of the isomerization of HNC via the reaction H + HNC ! HCN + H and the chemistry of H2CN needs to be improved [9].

[1]  Jack Poulson,et al.  Scientific computing , 2013, XRDS.

[2]  S. V. Gupta Evaluation of Measurement Data , 2012 .

[3]  J. Troe,et al.  A KINETIC DATABASE FOR ASTROCHEMISTRY (KIDA) , 2012, 1201.5887.

[4]  P. Hartogh,et al.  First detection of hydrogen isocyanide (HNC) in Titan's atmosphere , 2011 .

[5]  B. Bussery-Honvault,et al.  Towards a converged barrier height for the entrance channel transition state of the N(2D) + CH4 reaction and its implication for the chemistry in Titan’s atmosphere , 2011 .

[6]  B. Funke,et al.  Distribution of HCN in Titan's upper atmosphere from Cassini/VIMS observations at 3 μm , 2011 .

[7]  F. Billebaud,et al.  Key reactions in the photochemistry of hydrocarbons in Neptune's stratosphere , 2010 .

[8]  P. Pernot,et al.  Comparison of methods for the determination of key reactions in chemical systems: Application to Titan's atmosphere , 2010 .

[9]  D. Gell,et al.  INMS-derived composition of Titan's upper atmosphere: Analysis methods and model comparison , 2009 .

[10]  J. Loison,et al.  Kinetics and mechanisms of the reaction of CH with H2O , 2009 .

[11]  P. Pernot,et al.  How measurements of rate coefficients at low temperature increase the predictivity of photochemical models of Titan's atmosphere. , 2009, The journal of physical chemistry. A.

[12]  Nicolas Thomas,et al.  Water and Related Chemistry in the Solar System. A Guaranteed Time Key Programme for Herschel , 2009 .

[13]  H. Schlegel,et al.  Ab initio classical trajectory study of the dissociation of neutral and positively charged methanimine (CH2NHn+ n = 0-2). , 2009, The journal of physical chemistry. A.

[14]  Marzio Rosi,et al.  Combined crossed molecular beam and theoretical studies of the N(2D) + CH4 reaction and implications for atmospheric models of Titan. , 2009, The journal of physical chemistry. A.

[15]  V. Krasnopolsky A photochemical model of Titan's atmosphere and ionosphere , 2009 .

[16]  A. DePrince,et al.  Molecular geometries and harmonic frequencies from the parametric two-electron reduced density matrix method with application to the HCN < = > HNC isomerization. , 2008, The journal of physical chemistry. B.

[17]  P. Pernot,et al.  Epistemic bimodality and kinetic hypersensitivity in photochemical models of Titan's atmosphere , 2008 .

[18]  R. Yelle,et al.  Origin of oxygen species in Titan's atmosphere , 2008 .

[19]  T. Henning,et al.  Chemistry in Protoplanetary Disks: A Sensitivity Analysis , 2007, 0709.3323.

[20]  Athena Coustenis,et al.  Coupling photochemistry with haze formation in Titan's atmosphere, Part I: Model description , 2008 .

[21]  M. Banaszkiewicz,et al.  Influence of neutral transport on ion chemistry uncertainties in Titan ionosphere , 2007 .

[22]  Roger V. Yelle,et al.  Ion chemistry and N-containing molecules in Titan's upper atmosphere , 2007 .

[23]  R. Bartlett,et al.  HNNC radical and its role in the CH+N2 reaction. , 2007, The journal of physical chemistry. A.

[24]  Michel Dobrijevic,et al.  Photochemical kinetics uncertainties in modeling Titan's atmosphere: First consequences , 2007 .

[25]  Athena Coustenis,et al.  Vertical abundance profiles of hydrocarbons in Titan's atmosphere at 15° S and 80° N retrieved from Cassini/CIRS spectra , 2007 .

[26]  Michel Dobrijevic,et al.  Photochemical kinetics uncertainties in modeling Titan’s atmosphere: A review , 2006 .

[27]  A. Wodtke,et al.  Collision-free photochemistry of methylazide: observation of unimolecular decomposition of singlet methylnitrene. , 2006, The Journal of chemical physics.

[28]  A. Largo,et al.  The reaction of nitrogen atoms with methyl radicals: Are spin-forbidden channels important? , 2006, The journal of physical chemistry. A.

[29]  W. Eisfeld,et al.  Experimental and theoretical study of the electronic spectrum of the methylene amidogen radical (H2CN): verification of the 2A1 <-- 2B2 assignment. , 2006, The journal of physical chemistry. A.

[30]  S. Klippenstein,et al.  Predictive theory for the combination kinetics of two alkyl radicals. , 2006, Physical chemistry chemical physics : PCCP.

[31]  Weichao Zhang,et al.  Ab initio MO study of potential energy surface of NH2 with CN reaction , 2006 .

[32]  S. Standard GUIDE TO THE EXPRESSION OF UNCERTAINTY IN MEASUREMENT , 2006 .

[33]  S. Klippenstein,et al.  Long-range transition state theory. , 2005, The Journal of chemical physics.

[34]  R. West,et al.  The Cassini UVIS Stellar Probe of the Titan Atmosphere , 2005, Science.

[35]  Lawrence B Harding,et al.  Predictive theory for hydrogen atom-hydrocarbon radical association kinetics. , 2005, The journal of physical chemistry. A.

[36]  T. Geballe,et al.  Clouds, haze, and CH4, CH3D, HCN, and C2H2 in the atmosphere of Titan probed via 3 μm spectroscopy , 2005 .

[37]  D. Strobel,et al.  New perspectives on Titan's upper atmosphere from a reanalysis of the Voyager 1 UVS solar occultations , 2004 .

[38]  S. Atreya,et al.  Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere , 2004 .

[39]  Y. Osamura,et al.  NCCN and NCCCCN Formation in Titan's Atmosphere: 1. Competing Reactions of Precursor HCCN (3A‘ ‘) with H (2S) and CH3 (2A‘) , 2004 .

[40]  C. Griffith,et al.  HCN fluorescence on Titan , 2003 .

[41]  W. Forst Unimolecular Reactions: A Concise Introduction , 2003 .

[42]  S. Hoffmann,et al.  High resolution photo-absorption studies of acrylonitrile, C2H3CN, and acetonitrile, CH3CN , 2003 .

[43]  P. Dagdigian,et al.  Spectroscopic and Kinetic Investigation of Methylene Amidogen by Cavity Ring-Down Spectroscopy , 2003 .

[44]  T. Geballe,et al.  High-Resolution 3 Micron Spectroscopy of Molecules in the Mesosphere and Troposphere of Titan , 2003 .

[45]  S. Petrie Reactivity of HNC with Small Hydrocarbon Radicals , 2002 .

[46]  N. Mason,et al.  Electronic excitation and optical cross sections of methylamine and ethylamine in the UV–VUV spectral region , 2002 .

[47]  D. B. Chesnut Localization function study of excitation processes in a set of small isoelectronic molecules , 2001, J. Comput. Chem..

[48]  S. Petrie Hydrogen Isocyanide, HNC: A Key Species in the Chemistry of Titan's Ionosphere? , 2001 .

[49]  L. Moskaleva,et al.  The CH+N2 reaction over the ground electronic doublet potential energy surface: a detailed transition state search , 2000 .

[50]  M. Banaszkiewicz,et al.  A Coupled Model of Titan's Atmosphere and Ionosphere , 2000 .

[51]  D. Muhleman,et al.  Note: CO on Titan: More Evidence for a well-mixed vertical profile , 2000, astro-ph/0002331.

[52]  E. Herbst,et al.  Calculations on the rates, mechanisms, and interstellar importance of the reactions between C and NH2 and between N and CH2 , 2000 .

[53]  T. Takayanagi,et al.  Direct ab initio classical trajectory calculations for the N(2D)+CH4 insertion reaction , 1999 .

[54]  John T. Herron,et al.  Evaluated Chemical Kinetics Data for Reactions of N(2D), N(2P), and N2(A 3Σu+) in the Gas Phase , 1999 .

[55]  Karen J. Olsen,et al.  NIST Atomic Spectra Database (version 2.0) , 1999 .

[56]  Kei Sato,et al.  KINETIC STUDIES ON THE N(2D, 2P) + CH4 AND CD4 REACTIONS : THE ROLE OF NONADIABATIC TRANSITIONS ON THERMAL RATE CONSTANTS , 1999 .

[57]  M. Kawasaki,et al.  Reactions of N(2 2D) with methane and deuterated methanes , 1998 .

[58]  M. Nguyen,et al.  A Theoretical Study of the CH2N System: Reactions in both Lowest Lying Doublet and Quartet States , 1998 .

[59]  Toshiyuki Takayanagi,et al.  Measurements of Thermal Rate Constants and Theoretical Calculations for the N(2D,2P) + C2H2and C2D2Reactions , 1998 .

[60]  E. Lellouch,et al.  External supply of oxygen to the atmospheres of the giant planets , 1997, Nature.

[61]  R. Samuelson,et al.  Gaseous abundances and methane supersaturation in Titan's troposphere , 1997 .

[62]  D. Talbi,et al.  Isomerization versus hydrogen exchange reaction in the HNC ⇌ HCN conversion , 1996 .

[63]  Emmanuel Lellouch,et al.  Erratum: ``Vertical distribution of Titan's atmospheric neutral constituents'' , 1996 .

[64]  R. Sumathi Dissociation and isomerization reactions of formaldimine on the ground and excited state surface , 1996 .

[65]  M. Nguyen,et al.  Another Look at the Decomposition of Methyl Azide and Methanimine: How Is HCN Formed? , 1996 .

[66]  D. Muhleman,et al.  CO on Titan: Evidence for a Well-Mixed Vertical Profile , 1995 .

[67]  C P McKay,et al.  Photochemical modeling of Titan's atmosphere , 1995, Icarus.

[68]  Raymond W. Walker,et al.  Evaluated kinetic data for combustion modelling supplement I , 1994 .

[69]  Ian W. M. Smith,et al.  Rate constants for the reactions of CN with hydrocarbons at low and ultra-low temperatures , 1993 .

[70]  Ghanshyam L. Vaghjiani Ultraviolet absorption cross sections for N2H4 vapor between 191–291 nm and H(2S) quantum yield in 248 nm photodissociation at 296 K , 1993 .

[71]  Xun Zhu,et al.  Titan's upper atmosphere - Structure and ultraviolet emissions , 1992 .

[72]  D. Clary,et al.  Fast reactions between diatomic and polyatomic molecules , 1992 .

[73]  M. C. Lin,et al.  CN radical reactions with selected olefins in the temperature range of 174-740 K , 1992 .

[74]  J. W. Fleming,et al.  Direct measurement of rate constants for the reactions of CH and CD with HCN and DCN , 1991 .

[75]  Kinetic studies of the reactions of methyleneaminylium and dideuteromethyleneaminylium radicals with nitrogen and hydrogen atoms , 1990 .

[76]  G. Marston,et al.  Branching ratios in the N + CH3 reaction - Formation of the methylene amidogen (H2CN) radical , 1989 .

[77]  W. A. Payne,et al.  Temperature dependence of the reaction of nitrogen atoms with methyl radicals , 1989 .

[78]  S. Peyerimhoff,et al.  Vertical electronic spectra of the isovalent molecules H2CNH, H2SiNH, H2CPH, and H2SiPH on the basis of MRD-CI calculations , 1985 .

[79]  M. Allen,et al.  Photochemistry of the atmosphere of Titan: comparison between model and observations. , 1984, The Astrophysical journal. Supplement series.

[80]  A. Deane,et al.  Bladder instability. Is the primary defect in the urethra? , 1983, British journal of urology.

[81]  L. F. Phillips,et al.  Photometric and mass spectrometric observations on the reaction of hydrogen atoms with cyanogen , 1971 .

[82]  L. F. Phillips,et al.  Mass spectrometric study of the reaction of nitrogen atoms with nitrosyl chloride , 1971 .