Ion trap in a semiconductor chip

The electromagnetic manipulation of isolated atoms has led to many advances in physics, from laser cooling1 and Bose–Einstein condensation of cold gases2 to the precise quantum control of individual atomic ions3. Work on miniaturizing electromagnetic traps to the micrometre scale promises even higher levels of control and reliability4. Compared with ‘chip traps’ for confining neutral atoms5,6,7, ion traps with similar dimensions and power dissipation offer much higher confinement forces and allow unparalleled control at the single-atom level. Moreover, ion microtraps are of great interest in the development of miniature mass-spectrometer arrays8, compact atomic clocks9 and, most notably, large-scale quantum information processors10,11. Here we report the operation of a micrometre-scale ion trap, fabricated on a monolithic chip using semiconductor micro-electromechanical systems (MEMS) technology. We confine, laser cool and measure heating of a single 111Cd+ ion in an integrated radiofrequency trap etched from a doped gallium-arsenide heterostructure.

[1]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[2]  V. Garkanian,et al.  Miniature, high-resolution, quadrupole mass-spectrometer array , 1997 .

[3]  Harold Metcalf,et al.  Laser Cooling and Trapping , 1999, Peking University-World Scientific Advanced Physics Series.

[4]  Gardiner,et al.  Decoherence, continuous observation, and quantum computing: A cavity QED model. , 1995, Physical review letters.

[5]  C. Zimmermann,et al.  Bose-Einstein condensation in a surface microtrap. , 2001, Physical review letters.

[6]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[7]  David J. Wineland,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[8]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[9]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[10]  D. Stick,et al.  Planar ion trap geometry for microfabrication , 2004 .

[11]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[12]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[13]  G. Milburn,et al.  Ion trap transducers for quantum electromechanical oscillators , 2005, quant-ph/0501037.

[14]  Lu-Ming Duan,et al.  Scalable trapped ion quantum computation with a probabilistic ion-photon mapping , 2004, Quantum Inf. Comput..

[15]  J. Hughes,et al.  Transport of Quantum States and Separation of Ions in a Dual Rf Ion Trap * , 2002 .

[16]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[17]  A. Leggett,et al.  Bose-Einstein condensation in the alkali gases: Some fundamental concepts , 2001 .

[18]  P. Hommelhoff,et al.  Bose–Einstein condensation on a microelectronic chip , 2001, Nature.

[19]  Michael E. Gehm,et al.  Dynamics of noise-induced heating in atom traps , 1998 .

[20]  J. Kitching,et al.  A microfabricated atomic clock , 2004 .

[21]  H. Dehmelt,et al.  Radiofrequency Spectroscopy of Stored Ions I: Storage , 1968 .

[22]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[23]  E. Knill,et al.  Quantum control, quantum information processing, and quantum-limited metrology with trapped ions , 2005 .

[24]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[25]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[26]  Bell,et al.  Coaxial-resonator-driven rf (Paul) trap for strong confinement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[27]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.