Satellite Microwave Retrieval of Total Precipitable Water Vapor and Surface Air Temperature Over Land From AMSR2

An approach for deriving atmosphere total precipitable water vapor (PWV) and surface air temperature over land using satellite passive microwave radiometry from the Advanced Microwave Scanning Radiometer 2 (AMSR2) was developed in this study. The PWV algorithm is based on theoretical analysis and comparisons against similar retrievals from the Atmospheric Infrared Sounder (AIRS). The AMSR2 PWV retrievals compare favorably with AIRS operational PWV products (R2 ≥ 0.80 and rmse: 4.4-5.6 mm) and independent PWV observations from the SuomiNet North American Global Positioning System station network, with an overall mean rmse of 4.7 mm and more than 78% of absolute retrieval errors below 5 mm. The PWV retrievals were then applied within an AMSR2 multifrequency brightness temperature algorithm for deriving atmosphere-corrected surface air temperatures. The estimated temperatures agree favorably (R2 > 0.80 and rmse <; 3.5 K) with independent weather station daily air temperature measurements spanning global climate and land cover variability. The resulting PWV estimates increase surface air temperature retrieval accuracy in our algorithm scheme. The AMSR2 algorithm is readily applied to similar microwave sensors including the AMSR for EOS and provides suitable performance and accuracy to support hydrologic, ecosystem, and climate change studies.

[1]  S. A. Snyder,et al.  Determination of oceanic total precipitable water from the SSM/I , 1990 .

[2]  Bing Lin,et al.  Seasonal Variation of Liquid and Ice Water Path in Nonprecipitating Clouds over Oceans , 1996 .

[3]  Annmarie Eldering,et al.  Characterization of AIRS temperature and water vapor measurement capability using correlative observations , 2005 .

[4]  Yu Wang,et al.  A new water vapor algorithm for TRMM Microwave Imager (TMI) measurements based on a log linear relationship , 2009 .

[5]  Darren L. Jackson,et al.  Spaceborne observation of columnar water vapor: SSMI observations and algorithm , 1991 .

[6]  Yoram J. Kaufman,et al.  Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near‐infrared channels , 2003 .

[7]  Henry E. Fuelberg,et al.  A Comparison of the First-Guess Dependence of Precipitable Water Estimates from Three Techniques Using GOES Data , 1997 .

[8]  H. Grassl,et al.  Water vapour in the atmospheric boundary layer over oceans from SSM/I measurements , 1993 .

[9]  Eric F. Wood,et al.  Satellite Microwave Remote Sensing of Daily Land Surface Air Temperature Minima and Maxima From AMSR-E , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[10]  F. Wentz A well‐calibrated ocean algorithm for special sensor microwave / imager , 1997 .

[11]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  Filipe Aires,et al.  Potential of Advanced Microwave Sounding Unit‐A (AMSU‐A) and AMSU‐B measurements for atmospheric temperature and humidity profiling over land , 2005 .

[13]  E. Njoku,et al.  Vegetation and surface roughness effects on AMSR-E land observations , 2006 .

[14]  Jinyang Du,et al.  A method to improve satellite soil moisture retrievals based on Fourier analysis , 2012 .

[15]  Merritt N. Deeter,et al.  A new satellite retrieval method for precipitable water vapor over land and ocean , 2007 .

[16]  Dian J. Seidel,et al.  Water Vapor: Distribution and Trends , 2002 .

[17]  W. Emery,et al.  Atmospheric water vapour over oceans from SSM/I measurements , 1990 .

[18]  Beryl Graham,et al.  Digital Media , 2003 .

[19]  Gail E. Bingham,et al.  IASI temperature and water vapor retrievals – error assessment and validation , 2009 .

[20]  D. E. Harrison,et al.  Observation needs for climate information, prediction and application: Capabilities of existing and future observing systems , 2010 .

[21]  Will Manning,et al.  Near concurrent MIR, SSM/T-2, and SSM/I observations over snow-covered surfaces , 2003 .

[22]  Nazzareno Pierdicca,et al.  Satellite-Based Retrieval of Precipitable Water Vapor Over Land by Using a Neural Network Approach , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[23]  N. Grody Classification of snow cover and precipitation using the special sensor microwave imager , 1991 .

[24]  Yoram J. Kaufman,et al.  Remote sensing of water vapor in the near IR from EOS/MODIS , 1992, IEEE Trans. Geosci. Remote. Sens..

[25]  John S. Kimball,et al.  Satellite assessment of land surface evapotranspiration for the pan‐Arctic domain , 2009 .

[26]  Mary Jo Brodzik,et al.  An earth-gridded SSM/I data set for cryospheric studies and global change monitoring , 1995 .

[27]  Christopher D. Barnet,et al.  Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of fractional cloud cover , 2006 .

[28]  Takashi Maeda,et al.  Status of AMSR2 instrument on GCOM-W1 , 2012, Asia-Pacific Environmental Remote Sensing.

[29]  G. Campbell,et al.  On the relationship between incoming solar radiation and daily maximum and minimum temperature , 1984 .

[30]  B. V. Krishna Murthy,et al.  Altitude Profiles of Tropospheric Water Vapor at Low Latitudes , 1990 .

[31]  Soroosh Sorooshian,et al.  SuomiNet: A Real-Time National GPS Network for Atmospheric Research and Education. , 2000 .

[32]  B. Soden,et al.  WATER VAPOR FEEDBACK AND GLOBAL WARMING 1 , 2003 .

[33]  T. Huntington Evidence for intensification of the global water cycle: Review and synthesis , 2006 .

[34]  Francina Dominguez,et al.  Oceanic and terrestrial sources of continental precipitation , 2012 .

[35]  Christopher D. Barnet,et al.  Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts , 2006 .

[36]  Robert O. Knuteson,et al.  An assessment of the absolute accuracy of the Atmospheric Infrared Sounder v5 precipitable water vapor product at tropical, midlatitude, and arctic ground-truth sites: September 2002 , 2010 .

[37]  Keiji Imaoka,et al.  The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies , 2003, IEEE Trans. Geosci. Remote. Sens..

[38]  Merritt N. Deeter,et al.  New dual‐frequency microwave technique for retrieving liquid water path over land , 2006 .

[39]  K. Moffett,et al.  Remote Sens , 2015 .

[40]  C. Daly,et al.  Local atmospheric decoupling in complex topography alters climate change impacts , 2010 .

[41]  Robert E. Dickinson Walter Orr Roberts Lecture , 1995 .

[42]  Michael C Wimberly,et al.  Satellite Microwave Remote Sensing for Environmental Modeling of Mosquito Population Dynamics. , 2012, Remote sensing of environment.

[43]  Yoshiaki Sato,et al.  Impact of GPS and TMI Precipitable Water Data on Mesoscale Numerical Weather Prediction Model Forecasts , 2004 .

[44]  F. Aires,et al.  A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations , 2001 .

[45]  Philip W. Rosenkranz,et al.  Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements , 2001, IEEE Trans. Geosci. Remote. Sens..

[46]  Anup K. Prasad,et al.  Validation of MODIS Terra, AIRS, NCEP/DOE AMIP‐II Reanalysis‐2, and AERONET Sun photometer derived integrated precipitable water vapor using ground‐based GPS receivers over India , 2009 .

[47]  Eric F. Wood,et al.  Validation of AIRS/AMSU‐A water vapor and temperature data with in situ aircraft observations from the surface to UT/LS from 87°N–67°S , 2013 .

[48]  John S. Kimball,et al.  A Satellite Approach to Estimate Land–Atmosphere $\hbox{CO}_{2}$ Exchange for Boreal and Arctic Biomes Using MODIS and AMSR-E , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Frank J. Wentz,et al.  Algorithm Theoretical Basis Document (ATBD) AMSR Level 2A Algorithm , 2000 .

[50]  F. Wentz,et al.  How Much More Rain Will Global Warming Bring? , 2007, Science.

[51]  Filipe Aires,et al.  Atmospheric water‐vapour profiling from passive microwave sounders over ocean and land. Part I: Methodology for the Megha‐Tropiques mission , 2013 .

[52]  Elizaveta Zabolotskikh,et al.  Atmospheric Water Vapor and Cloud Liquid Water Retrieval Over the Arctic Ocean Using Satellite Passive Microwave Sensing , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[53]  John M. Forsythe,et al.  Weather and climate analyses using improved global water vapor observations , 2012 .

[54]  Denis Tremblay,et al.  Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality , 2013 .

[55]  D. Roy,et al.  An overview of MODIS Land data processing and product status , 2002 .

[56]  A. Gruber,et al.  Atmospheric Water Content over the Tropical Pacific Derived from the Nimbus-6 Scanning Microwave Spectrometer , 1980 .

[57]  James G. Yoe,et al.  The Validation of AIRS Retrievals of Integrated Precipitable Water Vapor Using Measurements from a Network of Ground-Based GPS Receivers over the Contiguous United States , 2008 .