An Introduction to Learning Structured Information

Connectionist models for sequence processing are based on the same recursive state updating scheme that characterizes the state space representation used in system theory to describe nonlinear dynamical systems. In this paper, we introduce a graphical computational framework for learning data structures, but little emphasis is given to specific models and learning algorithms.

[1]  Alessandro Sperduti,et al.  Encoding Labeled Graphs by Labeling RAAM , 1993, NIPS.

[2]  Christoph Goller,et al.  Learning task-dependent distributed representations by backpropagation through structure , 1996, Proceedings of International Conference on Neural Networks (ICNN'96).

[3]  Hava T. Siegelmann,et al.  Computational capabilities of recurrent NARX neural networks , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[4]  Judea Pearl,et al.  Chapter 2 – BAYESIAN INFERENCE , 1988 .

[5]  M. Forcada Beyond Mealy machines : Learning translatorswith recurrent neural , 1996 .

[6]  Mikel L. Forcada,et al.  Learning the Initial State of a Second-Order Recurrent Neural Network during Regular-Language Inference , 1995, Neural Computation.

[7]  Christoph Goller,et al.  A connectionist approach for learning search-control heuristics for automated deduction systems , 1999, DISKI.

[8]  james w.thatcher,et al.  tree automata: an informal survey , 1974 .

[9]  Alessandro Sperduti,et al.  A general framework for adaptive processing of data structures , 1998, IEEE Trans. Neural Networks.

[10]  Larry Wos,et al.  Automated Reasoning: Introduction and Applications , 1984 .

[11]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[12]  Alessandro Sperduti,et al.  Supervised neural networks for the classification of structures , 1997, IEEE Trans. Neural Networks.

[13]  Carl H. Smith,et al.  Inductive Inference: Theory and Methods , 1983, CSUR.

[14]  Alessandro Sperduti,et al.  Neural Networks for Processing Data Structures , 1997, Summer School on Neural Networks.

[15]  Theodosios Pavlidis,et al.  Structural pattern recognition , 1977 .

[16]  Mike Casey,et al.  The Dynamics of Discrete-Time Computation, with Application to Recurrent Neural Networks and Finite State Machine Extraction , 1996, Neural Computation.

[17]  Ronald J. Williams,et al.  Gradient-based learning algorithms for recurrent networks and their computational complexity , 1995 .

[18]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[19]  Enrique Vidal,et al.  Learning Subsequential Transducers for Pattern Recognition Interpretation Tasks , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  O. Firschein,et al.  Syntactic pattern recognition and applications , 1983, Proceedings of the IEEE.

[21]  Ah Chung Tsoi,et al.  A Comparison of Discrete-Time Operator Models and for Nonlinear System Identification , 1994, NIPS.

[22]  E. Mark Gold,et al.  Complexity of Automaton Identification from Given Data , 1978, Inf. Control..

[23]  Alessandro Sperduti,et al.  Labelling Recursive Auto-associative Memory , 1994, Connect. Sci..

[24]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Yves Chauvin,et al.  Backpropagation: the basic theory , 1995 .

[26]  Yoshua Bengio,et al.  Input-output HMMs for sequence processing , 1996, IEEE Trans. Neural Networks.

[27]  Yoshua Bengio,et al.  Recurrent Neural Networks for Missing or Asynchronous Data , 1995, NIPS.

[28]  A. Sperduti Labeling Raam , 1994 .

[29]  C. Lee Giles,et al.  Constructing deterministic finite-state automata in recurrent neural networks , 1996, JACM.

[30]  Robert J. Schalkoff,et al.  Pattern recognition - statistical, structural and neural approaches , 1991 .

[31]  José Carlos Príncipe,et al.  The gamma model--A new neural model for temporal processing , 1992, Neural Networks.

[32]  Renée Elio,et al.  A theory of grammatical induction in the connectionist paradigm , 1996 .

[33]  Alfred V. Aho,et al.  Currents In The Theory Of Computing , 1973 .

[34]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[35]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[36]  Jordan B. Pollack,et al.  Recursive Distributed Representations , 1990, Artif. Intell..

[37]  Michael I. Jordan,et al.  Probabilistic Independence Networks for Hidden Markov Probability Models , 1997, Neural Computation.