Computationally efficient statistical face model in the feature space

In this paper, we present a computationally efficient statistical face modeling approach. The efficiency of our proposed approach is the result of mathematical simplifications in the core formula of a previous face modeling method and the use of the singular value decomposition. In order to reduce the errors in our resulting models, we preprocess the facial images to normalize for pose and illumination and remove little occlusions. Then, the statistical face models for the enrolled subjects are obtained from the normalized face images. The effects of the variations in pose, facial expression, and illumination on the accuracy of the system are studied. Experimental results demonstrate the reduction in the computational complexity of the new approach and its efficacy in modeling the face images.

[1]  Lonnie C. Ludeman,et al.  Fundamentals of Digital Signal Processing , 1986 .

[2]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[3]  Timothy F. Cootes,et al.  Statistical models of face images - improving specificity , 1998, Image Vis. Comput..

[4]  Matti Pietikäinen,et al.  IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor , 2022 .

[5]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[6]  Biao Wang,et al.  Illumination Normalization Based on Weber's Law With Application to Face Recognition , 2011, IEEE Signal Processing Letters.

[7]  Ehsan Namjoo,et al.  Evaluating the informativity of features in dimensionality reduction methods , 2011, 2011 5th International Conference on Application of Information and Communication Technologies (AICT).

[8]  Timothy F. Cootes,et al.  Interpreting face images using active appearance models , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[9]  Timothy F. Cootes,et al.  Toward Automatic Simulation of Aging Effects on Face Images , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Saman A. Zonouz,et al.  Identification Using Encrypted Biometrics , 2013, CAIP.

[11]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[12]  Timothy F. Cootes,et al.  Learning to identify and track faces in image sequences , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[13]  Yi Ma,et al.  TILT: Transform Invariant Low-Rank Textures , 2010, ACCV 2010.

[14]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Joyce Van de Vegte,et al.  Fundamentals of Digital Signal Processing , 2001 .

[16]  Chengjun Liu,et al.  Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition , 2002, IEEE Trans. Image Process..

[17]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  John Wright,et al.  RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Peter Läuchli,et al.  Jordan-Elimination und Ausgleichung nach kleinsten Quadraten , 1961 .

[21]  John Wright,et al.  RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images , 2012, IEEE Trans. Pattern Anal. Mach. Intell..