A general formulation of Bead Models applied to flexible fibers and active filaments at low Reynolds number

This contribution provides a general framework to use Lagrange multipliers for the simulation of low Reynolds number fiber dynamics based on Bead Models (BM). This formalism provides an efficient method to account for kinematic constraints. We illustrate, with several examples, to which extent the proposed formulation offers a flexible and versatile framework for the quantitative modeling of flexible fibers deformation and rotation in shear flow, the dynamics of actuated filaments and the propulsion of active swimmers. Furthermore, a new contact model called Gears Model is proposed and successfully tested. It avoids the use of numerical artifices such as repulsive forces between adjacent beads, a source of numerical difficulties in the temporal integration of previous Bead Models.

[1]  F. Jülicher,et al.  Generic aspects of axonemal beating , 2000 .

[2]  L. Fauci,et al.  The method of regularized Stokeslets in three dimensions : Analysis, validation, and application to helical swimming , 2005 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  T. Powers,et al.  The hydrodynamics of swimming microorganisms , 2008, 0812.2887.

[5]  Parviz E. Nikravesh,et al.  An Overview of Several Formulations for Multibody Dynamics , 2004 .

[6]  Michael Shelley,et al.  Simulating the dynamics and interactions of flexible fibers in Stokes flows , 2004 .

[7]  D. J. O H Accelerated Stokesian Dynamics simulations , 2022 .

[8]  E. Gaffney,et al.  Mammalian Sperm Motility: Observation and Theory , 2011 .

[9]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[10]  Satoru Yamamoto,et al.  A method for dynamic simulation of rigid and flexible fibers in a flow field , 1993 .

[11]  D. Morse,et al.  Brownian dynamics algorithm for bead-rod semiflexible chain with anisotropic friction. , 2005, The Journal of chemical physics.

[12]  Dynamics of fibers in a wide microchannel. , 2011, The Journal of chemical physics.

[13]  E. Gauger,et al.  Numerical study of a microscopic artificial swimmer. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Raymond E. Goldstein,et al.  FLEXIVE AND PROPULSIVE DYNAMICS OF ELASTICA AT LOW REYNOLDS NUMBER , 1997, cond-mat/9707346.

[15]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[16]  I. Llopis,et al.  Cooperative motion of intrinsic and actuated semiflexible swimmers , 2013 .

[17]  C. Wiggins,et al.  Trapping and wiggling: elastohydrodynamics of driven microfilaments. , 1997, Biophysical journal.

[18]  R. G. Cox The motion of long slender bodies in a viscous fluid Part 1. General theory , 1970, Journal of Fluid Mechanics.

[19]  S. B. Lindström,et al.  Simulation of the motion of flexible fibers in viscous fluid flow , 2007 .

[20]  K. Breuer,et al.  Shape transition and propulsive force of an elastic rod rotating in a viscous fluid. , 2007, Physical review letters.

[21]  J. Maia,et al.  Stokesian dynamics simulation of the role of hydrodynamic interactions on the behavior of a single p , 2011 .

[22]  T. G. Kang,et al.  Numerical and experimental study of a rotating magnetic particle chain in a viscous fluid. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Bertrand Maury,et al.  Microscopic Modelling of Active Bacterial Suspensions , 2011 .

[24]  C. Lowe Dynamics of filaments: modelling the dynamics of driven microfilaments. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  Christos Bergeles,et al.  Characterizing the swimming properties of artificial bacterial flagella. , 2009, Nano letters.

[26]  Ricardo Cortez,et al.  Investigation of bend and shear waves in a geometrically exact elastic rod model , 2004 .

[27]  Martin R. Maxey,et al.  Simulation of concentrated suspensions using the force-coupling method , 2010, J. Comput. Phys..

[28]  Dewei Qi Direct simulations of flexible cylindrical fiber suspensions in finite Reynolds number flows. , 2006, The Journal of chemical physics.

[29]  L. E. Becker,et al.  Instability of elastic filaments in shear flow yields first-normal-stress differences. , 2001, Physical review letters.

[30]  Eric F Darve,et al.  A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: The sedimentation of fibers , 2005 .

[31]  Shawn W. Walker,et al.  Optimization of chiral structures for microscale propulsion. , 2013, Nano letters.

[32]  E. Gaffney,et al.  Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration? , 2010, Journal of The Royal Society Interface.

[33]  The dynamics of the coil-stretch transition for long, flexible polymers in planar mixed flows , 2007 .

[34]  Three-dimensional beating of magnetic microrods. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  D. Klingenberg,et al.  DYNAMIC SIMULATION OF FLEXIBLE FIBERS COMPOSED OF LINKED RIGID BODIES , 1997 .

[36]  Tamar Schlick,et al.  A Combined Wormlike-Chain and Bead Model for Dynamic Simulations of Long Linear DNA , 1997 .

[37]  A. Gast,et al.  Dynamic simulation of freely draining flexible polymers in steady linear flows , 1997, Journal of Fluid Mechanics.

[38]  Ricardo Cortez,et al.  The dynamics of sperm detachment from epithelium in a coupled fluid-biochemical model of hyperactivated motility. , 2014, Journal of theoretical biology.

[39]  Juan J. de Pablo,et al.  Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions , 2002 .

[40]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[41]  Liping Liu THEORY OF ELASTICITY , 2012 .

[42]  W. Russel,et al.  Low-Reynolds-number translation of a slender cylinder near a plane wall , 1975 .

[43]  S. G. Mason,et al.  Particle motions in sheared suspensions: X. Orbits of flexible threadlike particles , 1959 .

[44]  J. Maia,et al.  Analysis of rheological properties of fibre suspensions in a Newtonian fluid by direct fibre simulation. Part1: Rigid fibre suspensions , 2010 .

[45]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[46]  L. Fauci,et al.  A computational model of aquatic animal locomotion , 1988 .

[47]  Tony S. Yu,et al.  Experimental Investigations of Elastic Tail Propulsion At Low Reynolds Number , 2006, cond-mat/0606527.

[48]  C. P. Lowe,et al.  Efficient constraint dynamics using MILC SHAKE , 2008, J. Comput. Phys..

[49]  L. Fauci Interaction of oscillating filaments: a computational study , 1990 .

[50]  H. Brenner,et al.  Particle motions in sheared suspensions , 1959 .

[51]  M. Maxey,et al.  Spiral swimming of an artificial micro-swimmer , 2008, Journal of Fluid Mechanics.

[52]  Nhan Phan-Thien,et al.  Direct simulation of flexible fibers , 2001 .

[53]  S. Chu,et al.  Effect of hydrodynamic interactions on DNA dynamics in extensional flow: Simulation and single molecule experiment , 2004 .

[54]  J. Brady,et al.  Modeling hydrodynamic self-propulsion with Stokesian Dynamics. Or teaching Stokesian Dynamics to swim , 2011 .

[55]  C. Pozrikidis Shear flow past slender elastic rods attached to a plane , 2011 .

[56]  Ricardo Cortez,et al.  Modeling the dynamics of an elastic rod with intrinsic curvature and twist using a regularized Stokes formulation , 2013, J. Comput. Phys..

[57]  Jacques Periaux,et al.  Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies , 1998 .

[58]  Charles S. Peskin,et al.  Drag of a flexible fiber in a 2D moving viscous fluid , 2007 .

[59]  Ted Belytschko,et al.  The extended finite element method for rigid particles in Stokes flow , 2001 .

[60]  E. Purcell Life at Low Reynolds Number , 2008 .

[61]  Satoru Yamamoto,et al.  Dynamic simulation of fiber suspensions in shear flow , 1995 .

[62]  A. Fogelson,et al.  A fast numerical method for solving the three-dimensional Stokes' equations in the presence of suspended particles , 1988 .

[63]  C. Peskin,et al.  Simulation of a Flapping Flexible Filament in a Flowing Soap Film by the Immersed Boundary Method , 2002 .

[64]  Zydrunas Gimbutas,et al.  A fast multipole method for the Rotne-Prager-Yamakawa tensor and its applications , 2013, J. Comput. Phys..

[65]  Robert Dillon,et al.  A 3D Motile Rod-Shaped Monotrichous Bacterial Model , 2009, Bulletin of mathematical biology.

[66]  D. Klingenberg,et al.  Simulations of fiber flocculation: Effects of fiber properties and interfiber friction , 2000 .

[67]  M. Fermigier,et al.  Helical beating of an actuated elastic filament , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[68]  Juan J. de Pablo,et al.  Hydrodynamic interactions in long chain polymers: Application of the Chebyshev polynomial approximation in stochastic simulations , 2000 .

[69]  David Saintillan,et al.  The sedimentation of flexible filaments , 2013, Journal of Fluid Mechanics.

[70]  S. G. Mason,et al.  Particle motions in sheared suspensions XX: Circular cylinders , 1967 .

[71]  Eric E. Keaveny Dynamics of structures in active suspensions of paramagnetic particles and applications to artificial micro-swimmers , 2008 .

[72]  Sun Hanxu,et al.  The Design and Analysis of A Spherical Mobile Robot , 2004 .

[73]  M Cosentino Lagomarsino,et al.  Hydrodynamic induced deformation and orientation of a microscopic elastic filament. , 2005, Physical review letters.

[74]  Friction coefficient of rod-like chains of spheres at very low Reynolds numbers. I. Experiment , 1994 .

[75]  A. Salinas,et al.  Bending and breaking fibers in sheared suspensions , 1981 .

[76]  D. Klingenberg,et al.  Flipping, scooping, and spinning: Drift of rigid curved nonchiral fibers in simple shear flow , 2012 .

[77]  R. Netz,et al.  Propulsion with a rotating elastic nanorod. , 2006, Physical review letters.

[78]  H. Stone,et al.  Buckling transitions of an elastic filament in a viscous stagnation point flow , 2012 .

[79]  G. B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .

[80]  T. Birkhead,et al.  By Hook or by Crook? Morphometry, Competition and Cooperation in Rodent Sperm , 2007, PloS one.

[81]  E. Lauga Floppy swimming: viscous locomotion of actuated elastica. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  Hiromi Yamakawa,et al.  Transport Properties of Polymer Chains in Dilute Solution: Hydrodynamic Interaction , 1970 .

[83]  Eligiusz Wajnryb,et al.  Generalization of the Rotne–Prager–Yamakawa mobility and shear disturbance tensors , 2013, Journal of Fluid Mechanics.

[84]  S. Green,et al.  Simulating the Motion of Flexible Pulp Fibres Using the Immersed Boundary Method , 1998 .

[85]  A. Leshansky,et al.  Undulatory locomotion of finite filaments: lessons from Caenorhabditis elegans , 2013, 1307.0368.

[86]  J. Blawzdziewicz,et al.  Navigation and chemotaxis of nematodes in bulk and confined fluids , 2013 .

[87]  Jun Zhang,et al.  Experiments and theory of undulatory locomotion in a simple structured medium , 2012, Journal of The Royal Society Interface.

[88]  D. Klingenberg,et al.  Simulation of single fiber dynamics , 1997 .

[89]  S. G. Mason,et al.  Particle motions in sheared suspensions: IX. Spin and deformation of threadlike particles , 1959 .

[90]  R. Netz,et al.  Non-equilibrium hydrodynamics of a rotating filament , 2006, 0803.3168.

[91]  Friction coefficient of rod-like chains of spheres at very low Reynolds numbers. II: Numerical simulations , 1994 .

[92]  R. G. Cox The motion of long slender bodies in a viscous fluid. Part 2. Shear flow , 1971, Journal of Fluid Mechanics.

[93]  Denis Bartolo,et al.  Rotational dynamics of a soft filament: Wrapping transition and propulsive forces , 2008, 0802.1503.