Molecular origin of auxetic behavior in tetrahedral framework silicates.

Recent analytical models for the Poisson's ratios (nu(ij)) of tetrahedral frameworks are applied to alpha-cristobalite and alpha-quartz for the first time. Rotation and dilation of the SiO4 tetrahedral subunits are considered. Each mechanism leads to negative nu(31) values, whereas negative and positive values are possible when they act concurrently. The concurrent model is in excellent agreement with experiment and explains the dichotomy between negative and positive nu(31) values in alpha-cristobalite and alpha-quartz, respectively. The predicted strain-dependent trends confirm those from molecular modeling.

[1]  J. D. Jorgensen,et al.  Compression mechanisms in α‐quartz structures—SiO2 and GeO2 , 1978 .

[2]  Baughman,et al.  Negative Poisson's ratios for extreme states of matter , 2000, Science.

[3]  J. Parise,et al.  Elasticity of α-Cristobalite: A Silicon Dioxide with a Negative Poisson's Ratio , 1992, Science.

[4]  J. Faber,et al.  Crystal structure of low cristobalite at 10, 293, and 473 K: Variation of framework geometry with temperature , 1985 .

[5]  A. Griffin,et al.  Toward Negative Poisson Ratio Polymers Through Molecular Design , 1998 .

[6]  Kenneth E. Evans,et al.  Rotation and dilation deformation mechanisms for auxetic behaviour in the α-cristobalite tetrahedral framework structure , 2001 .

[7]  K. E. EVANS,et al.  Molecular network design , 1991, Nature.

[8]  Sam F. Edwards,et al.  Poisson ratio in composites of auxetics , 1998 .

[9]  Kenneth E. Evans,et al.  Modelling concurrent deformation mechanisms in auxetic microporous polymers , 1997 .

[10]  B. M. Lempriere Poisson's Ratio in Orthotropic Materials , 1968 .

[11]  B. Dorner,et al.  On the mechanism of the α-β phase transformation of quartz , 1974 .

[12]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[13]  T. Hahn,et al.  Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure , 1992 .

[14]  Kenneth E. Evans,et al.  Auxetic two-dimensional polymer networks. An example of tailoring geometry for specific mechanical properties , 1995 .

[15]  B. Hyde,et al.  Cristobalites and topologically-related structures , 1976 .

[16]  Universal negative poisson ratio of self-avoiding fixed-connectivity membranes. , 2001, Physical review letters.

[17]  B. D. Caddock,et al.  Microporous materials with negative Poisson's ratios. I. Microstructure and mechanical properties , 1989 .

[18]  R. Baughman,et al.  Negative Poisson's ratios as a common feature of cubic metals , 1998, Nature.

[19]  R. N. Thurston,et al.  Elastic Moduli of Quartz versus Hydrostatic Pressure at 25 and-195.8C , 1965 .

[20]  Martin T. Dove,et al.  Landau free energy and order parameter behaviour of theα/βphase transition in cristobalite , 1992 .

[21]  Kenneth E. Evans,et al.  Auxetic polyethylene: The effect of a negative poisson's ratio on hardness , 1994 .

[22]  Chelikowsky,et al.  Anomalous elastic behavior in crystalline silica. , 1993, Physical review. B, Condensed matter.

[23]  M. Smirnov,et al.  Lattice-dynamical study of the alpha-beta phase transition of quartz: soft-mode behavior and elastic , 1997 .

[24]  Kogure,et al.  Mechanism for negative poisson ratios over the alpha- beta transition of cristobalite, SiO2: A molecular-dynamics study , 2000, Physical review letters.