Excitation of magnetohydrodynamic modes by energetic trapped particles in reactive and dissipative systems

The excitation of magnetohydrodynamic modes by hot trapped particles is studied using different kinetic distribution functions and, for the first time, a fluid model, valid in both the adiabatic and isothermal limits of the perpendicular motion, an unexpanded fluid description for the hot particles. The fluid model gives zero threshold for continuum modes but also a significant reduction in the kinetic threshold can be obtained for particular equilibria. In addition, a comparison with global modes has been made.

[1]  M. Liljeström Low frequency electrostatic instabilities in a toroidal plasma with a hot ion beam , 1990 .

[2]  J. Weiland,et al.  Fully toroidal fluid model for low‐frequency localized modes in magnetized plasmas , 1990 .

[3]  H. Berk,et al.  Saturation of a single mode driven by an energetic injected beam. III. Alfven wave problem , 1990 .

[4]  R. White,et al.  Influence of an energetic ion population on tokamak plasma stability , 1990 .

[5]  G. Fu,et al.  Stability of the global Alfvén eigenmode in the presence of fusion alpha particles in an ignited tokamak plasma , 1989 .

[6]  J. W. Van Dam,et al.  Excitation of the toroidicity-induced shear Alfvén eigenmode by fusion alpha particles in an ignited tokamak , 1989 .

[7]  J. Weiland,et al.  A fully toroidal fluid analysis of the magnetohydrodynamic ballooning mode branch in tokamaks , 1988 .

[8]  Yan Ming Li,et al.  Destabilization of global Alfvén eigenmodes and kinetic Alfvén waves by alpha particles in a tokamak plasma , 1987 .

[9]  Porcelli,et al.  Theoretical model of fishbone oscillations in magnetically confined plasmas. , 1986, Physical review letters.

[10]  M. S. Chance,et al.  Low-n shear Alfven spectra in axisymmetric toroidal plasmas , 1986 .

[11]  Takahashi,et al.  Tangential neutral-beam-driven instabilities in the Princeton beta experiment. , 1986, Physical review letters.

[12]  Liu Chen,et al.  Influence of resistivity on energetic trapped particle-induced internal kink modes , 1986 .

[13]  J. Weiland,et al.  Effect of convective damping on the growth rate of magnetohydrodynamic ballooning modes , 1986 .

[14]  W. A. Cooper,et al.  Effects of trapped alpha particles on ballooning modes in tokamaks , 1985 .

[15]  J. Weiland,et al.  Magnetohydrodynamic ballooning instabilities excited by energetic trapped particles , 1985 .

[16]  G. Rewoldt,et al.  Influence of hot beam ions on MHD ballooning modes in tokamaks , 1984 .

[17]  R. White,et al.  Trapped particle destabilization of the internal kink mode , 1984 .

[18]  M. Rosenbluth,et al.  Excitation of internal kink modes by trapped energetic beam ions , 1984 .

[19]  M. Rosenbluth,et al.  Energetic particle stabilization of ballooning modes in tokamaks , 1983 .

[20]  R. Grimm,et al.  Study of high-beta magnetohydrodynamic modes and fast-ion losses in PDX , 1983 .

[21]  G. L. Chen,et al.  Discrete Alfvén eigenmode spectrum in magnetohydrodynamics , 1982 .

[22]  G. L. Chen,et al.  Kinetic description of Alfven wave heating , 1982 .

[23]  K. Tsang,et al.  Stabilization of ballooning modes by energetic particles in tokamaks , 1981 .

[24]  J. Whitson,et al.  Destabilitization of low mode number Alfvén modes in a tokamak by energetic or alpha particles , 1981 .

[25]  R. Hastie,et al.  Kinetic modifications to the MHD ballooning mode , 1981 .

[26]  H. Berk Stability of hot electron plasmas , 1976 .

[27]  J. Weiland,et al.  Excitation of Global Alfvén Modes by Trapped Alpha Particles , 1987 .

[28]  M. N. Rosenbluth,et al.  Excitation of Alfven waves by high-energy ions in a tokamak , 1975 .