The critical line congruence for reconstruction from three images

Let three projected images of a set of lines in space be given. Then, in general, the relative positions of the lines can be reconstructed uniquely up to a collineation of space. Reconstruction fails to be unique for certain critical sets of lines. It is known that each critical set is parameterised by a Bordiga surface in ℙ4. A new proof of this result is given. In addition, it is shown that every Bordiga surface parameterises a critical set of lines. The proof involves an explicit construction of the second or spurious set of lines which projects down to the same three images as the veridical set of lines.

[1]  Olivier D. Faugeras,et al.  The critical sets of lines for camera displacement estimation: A mixed Euclidean-projective and constructive approach , 1993, 1993 (4th) International Conference on Computer Vision.

[2]  J. Semple,et al.  Introduction to Algebraic Geometry , 1949 .

[3]  M. K. Leung,et al.  Estimating 3D vehicle motion in an outdoor scene from monocular and stereo image sequences , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[4]  Thomas S. Huang,et al.  Rigid object motion estimation from intensity images using straight-line correspondences , 1990 .

[5]  Thomas Buchanan On the critical set for photogrammetric reconstruction using line tokens in P3(ℂ) , 1992 .

[6]  O. Faugeras,et al.  Motion from point matches: Multiplicity of solutions , 1989, [1989] Proceedings. Workshop on Visual Motion.

[7]  Minas E. Spetsakis,et al.  Structure from motion using line correspondences , 1990, International Journal of Computer Vision.

[8]  T. G. Room The Geometry of Determinantal Loci , 1938 .

[9]  Thomas Buchanan,et al.  Critical Sets for 3D Reconstruction Using Lines , 1992, ECCV.

[10]  H. C. Longuet-Higgins Multiple interpretations of a pair of images of a surface , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  Lawrence S. Kroll Mathematica--A System for Doing Mathematics by Computer. , 1989 .

[12]  S. Maybank The projective geometry of ambiguous surfaces , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[13]  Thomas S. Huang,et al.  Estimation of rigid body motion using straight line correspondences , 1986, Comput. Vis. Graph. Image Process..

[14]  Quang-Tuan Luong Matrice fondamentale et autocalibration en vision par ordinateur , 1992 .

[15]  Thomas S. Huang,et al.  Theory of Reconstruction from Image Motion , 1992 .

[16]  Olivier Faugeras,et al.  Disambiguating stereo matches with spatio-temporal surfaces , 1992 .

[17]  J. G. Semple On Representations of Line-Congruences of the Second and Third Orders , 1933 .

[18]  S. Lang Introduction to Algebraic Geometry , 1972 .

[19]  Olivier D. Faugeras,et al.  A theory of self-calibration of a moving camera , 1992, International Journal of Computer Vision.

[20]  S. Maybank Properties of essential matrices , 1990, Int. J. Imaging Syst. Technol..

[21]  J. G. Semple,et al.  Algebraic Projective Geometry , 1953 .