Hyperboloidal approach for static spherically symmetric spacetimes: a didactical introduction and applications in black-hole physics

This work offers a didactical introduction to the calculations and geometrical properties of a static, spherically symmetric spacetime foliated by hyperboloidal time surfaces. We discuss the various degrees of freedom involved, namely the height function, responsible for introducing the hyperboloidal time coordinate, and a radial compactification function. A central outcome is the expression of the Trautman-Bondi mass in terms of the hyperboloidal metric functions. Moreover, we apply this formalism to a class of wave equations commonly used in black-hole perturbation theory. Additionally, we provide a comprehensive derivation of the hyperboloidal minimal gauge, introducing two alternative approaches within this conceptual framework: the in-out and out-in strategies. Specifically, we demonstrate that the height function in the in-out strategy follows from the well-known tortoise coordinate by changing the sign of the terms that become singular at future null infinity. Similarly, for the out-in strategy, a sign change also occurs in the tortoise coordinate's regular terms. We apply the methodology to the following spacetimes: Trumpet slices in Schwarzschild, Reisnner-Nordstr\"om-deSitter, Higher-dimensional black holes, and black hole with matter halo. From this heuristic study, we conjecture that the out-in strategy is best adapted for black hole geometries that account for environmental or effective quantum effects.

[1]  P. Pani,et al.  Quasinormal mode (in)stability and strong cosmic censorship , 2023, 2307.11155.

[2]  K. Landsteiner,et al.  Pseudospectra of Holographic Quasinormal Modes , 2023, 2307.08751.

[3]  Scott E. Field,et al.  Towards exponentially-convergent simulations of extreme-mass-ratio inspirals: A time-domain solver for the scalar Teukolsky equation with singular source terms , 2023, 2307.01349.

[4]  R. Macedo,et al.  Hyperboloidal discontinuous time-symmetric numerical algorithm with higher order jumps for gravitational self-force computations in the time domain , 2023, ArXiv.

[5]  S. Chakraborty,et al.  Perturbing the perturbed: Stability of quasinormal modes in presence of a positive cosmological constant , 2023, Physical Review D.

[6]  Gregorio Carullo,et al.  Agnostic black hole spectroscopy: quasinormal mode content of numerical relativity waveforms and limits of validity of linear perturbation theory , 2023, 2302.03050.

[7]  C. Markakis,et al.  Conservative Evolution of Black Hole Perturbations with Time-Symmetric Numerical Methods , 2022, ArXiv.

[8]  V. Cardoso,et al.  Gravitational Waves from Extreme-Mass-Ratio Systems in Astrophysical Environments. , 2022, Physical review letters.

[9]  V. Cardoso,et al.  Pseudospectrum of horizonless compact objects: A bootstrap instability mechanism , 2022, Physical Review D.

[10]  Thomas Osburn,et al.  New self-force method via elliptic partial differential equations for Kerr inspiral models , 2022, Physical Review D.

[11]  E. Berti,et al.  Stability of the fundamental quasinormal mode in time-domain observations against small perturbations , 2022, Physical Review D.

[12]  D. Gajic Late-time asymptotics for geometric wave equations with inverse-square potentials , 2022, Journal of Functional Analysis.

[13]  Leonhard M. A. Kehrberger,et al.  On the relation between asymptotic charges, the failure of peeling and late-time tails , 2022, Classical and Quantum Gravity.

[14]  Anil Zenginoglu,et al.  Hyperboloidal method for frequency-domain self-force calculations , 2022, Physical Review D.

[15]  Anzhong Wang,et al.  Gauge invariant perturbations of general spherically symmetric spacetimes , 2022, Science China Physics, Mechanics & Astronomy.

[16]  E. Berti,et al.  Destabilizing the Fundamental Mode of Black Holes: The Elephant and the Flea. , 2021, Physical review letters.

[17]  V. Cardoso,et al.  Black holes in galaxies: Environmental impact on gravitational-wave generation and propagation , 2021, Physical Review D.

[18]  J. Jaramillo,et al.  Energy scales and black hole pseudospectra: the structural role of the scalar product , 2021, Classical and Quantum Gravity.

[19]  E. Berti,et al.  Pseudospectrum of Reissner-Nordström black holes: Quasinormal mode instability and universality , 2021, Physical Review D.

[20]  J. Jaramillo,et al.  Gravitational Wave Signatures of Black Hole Quasinormal Mode Instability. , 2021, Physical review letters.

[21]  Dejan Gajic,et al.  Late-time tails and mode coupling of linear waves on Kerr spacetimes , 2021, Advances in Mathematics.

[22]  S. Aretakis,et al.  Price’s Law and Precise Late-Time Asymptotics for Subextremal Reissner–Nordström Black Holes , 2021, Annales Henri Poincaré.

[23]  B. Wardell,et al.  Black hole perturbation theory and gravitational self-force , 2021, 2101.04592.

[24]  A. Pound,et al.  Two-timescale evolution of extreme-mass-ratio inspirals: Waveform generation scheme for quasicircular orbits in Schwarzschild spacetime , 2020, Physical Review D.

[25]  Y. Ashida,et al.  Non-Hermitian physics , 2020, Advances in Physics.

[26]  Rodrigo Panosso Macedo,et al.  Pseudospectrum and Black Hole Quasinormal Mode Instability , 2020, Physical Review X.

[27]  B. Krishnan,et al.  Black hole spectroscopy in the next decade , 2020 .

[28]  R. Macedo Hyperboloidal framework for the Kerr spacetime , 2019, Classical and Quantum Gravity.

[29]  D. Gajic,et al.  Quasinormal Modes in Extremal Reissner–Nordström Spacetimes , 2019, Communications in Mathematical Physics.

[30]  D. Gajic,et al.  A model problem for quasinormal ringdown of asymptotically flat or extremal black holes , 2019, Journal of Mathematical Physics.

[31]  S. Dyatlov,et al.  Mathematical Theory of Scattering Resonances , 2019, Graduate Studies in Mathematics.

[32]  G. T'oth,et al.  Numerical investigation of the dynamics of linear spin s fields on a Kerr background: Late-time tails of spin s=±1,±2 fields , 2019, Physical Review D.

[33]  J. Sjöstrand Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations , 2019, Pseudo-Differential Operators.

[34]  S. Teukolsky,et al.  Black Hole Ringdown: The Importance of Overtones , 2019, Physical Review X.

[35]  L. Andersson,et al.  Stability for linearized gravity on the Kerr spacetime , 2019, 1903.03859.

[36]  J. Jaramillo,et al.  Hyperboloidal slicing approach to quasinormal mode expansions: The Reissner-Nordström case , 2018, Physical Review D.

[37]  L. Barack,et al.  Self-force and radiation reaction in general relativity , 2018, Reports on progress in physics. Physical Society.

[38]  S. Bernuzzi,et al.  Spinning test body orbiting around a Kerr black hole: Circular dynamics and gravitational-wave fluxes , 2017, 1707.07537.

[39]  C. V. Vishveshwara On the black hole trail ... , 2017 .

[40]  J. Thornburg,et al.  Scalar self-force for highly eccentric equatorial orbits in Kerr spacetime , 2016, 1610.09319.

[41]  B. Bruegmann,et al.  The evolution of hyperboloidal data with the dual foliation formalism: mathematical analysis and wave equation tests , 2016, 1609.08949.

[42]  S. Bernuzzi,et al.  Spinning test body orbiting around a Schwarzschild black hole: Circular dynamics and gravitational-wave fluxes , 2016, 1609.00356.

[43]  M. Ansorg,et al.  Spectral decomposition of black-hole perturbations on hyperboloidal slices , 2016, 1604.02261.

[44]  S. Bernuzzi,et al.  Asymptotic gravitational wave fluxes from a spinning particle in circular equatorial orbits around a rotating black hole , 2015, 1510.05548.

[45]  S. Bernuzzi,et al.  The antikick strikes back: Recoil velocities for nearly extremal binary black hole mergers in the test-mass limit , 2014, 1407.5033.

[46]  Anil Zenginoglu,et al.  A new gravitational wave generation algorithm for particle perturbations of the Kerr spacetime , 2014, 1406.5983.

[47]  T. Baumgarte,et al.  A simple family of analytical trumpet slices of the Schwarzschild spacetime , 2014, 1403.5484.

[48]  Rodrigo Panosso Macedo,et al.  Axisymmetric fully spectral code for hyperbolic equations , 2014, J. Comput. Phys..

[49]  Anil Zenginoglu,et al.  Self-force via Green functions and worldline integration , 2014, 1401.1506.

[50]  G. Khanna,et al.  Brief note on high-multipole Kerr tails , 2013, 1312.5210.

[51]  M. Ansorg,et al.  Axisymmetric constant mean curvature slices in the Kerr spacetime , 2013, 1310.4699.

[52]  S. Akcay,et al.  Frequency-domain algorithm for the Lorenz-gauge gravitational self-force , 2013, 1308.5223.

[53]  A. Zimmerman,et al.  Quasinormal modes of nearly extremal Kerr spacetimes: Spectrum bifurcation and power-law ringdown , 2013, 1307.8086.

[54]  M. Ansorg,et al.  Initial data for perturbed Kerr black holes on hyperboloidal slices , 2013, 1301.6984.

[55]  Sebastiano Bernuzzi,et al.  Numerical solution of the 2 + 1 Teukolsky equation on a hyperboloidal and horizon penetrating foliation of Kerr and application to late-time decays , 2013, 1301.1591.

[56]  S. Bernuzzi,et al.  Horizon-absorption effects in coalescing black-hole binaries: An effective-one-body study of the nonspinning case , 2012, 1207.0769.

[57]  Anil Zenginouglu,et al.  Caustic echoes from a Schwarzschild black hole , 2012, 1206.1109.

[58]  Michael Jasiulek Hyperboloidal slices for the wave equation of Kerr–Schild metrics and numerical applications , 2011, 1109.2513.

[59]  Gaurav Khanna,et al.  Null infinity waveforms from extreme-mass-ratio inspirals in Kerr spacetime , 2011, 1108.1816.

[60]  S. Bernuzzi,et al.  Binary black hole coalescence in the large-mass-ratio limit: The hyperboloidal layer method and waveforms at null infinity , 2011, 1107.5402.

[61]  Anil Zenginoglu,et al.  A geometric framework for black hole perturbations , 2011 .

[62]  Gabor Zsolt Toth,et al.  Numerical investigation of the late-time Kerr tails , 2011, 1104.4199.

[63]  R. Penrose Republication of: Conformal treatment of infinity , 2011 .

[64]  R. Konoplya,et al.  Quasinormal modes of black holes: From astrophysics to string theory , 2011, 1102.4014.

[65]  S. Akcay Fast frequency-domain algorithm for gravitational self-force: Circular orbits in Schwarzschild spacetime , 2010, 1012.5860.

[66]  S. Bernuzzi,et al.  Binary black hole coalescence in the extreme-mass-ratio limit: testing and improving the effective-one-body multipolar waveform , 2010, 1012.2456.

[67]  Anil Zenginoglu,et al.  Hyperboloidal layers for hyperbolic equations on unbounded domains , 2010, J. Comput. Phys..

[68]  Anil Zenginoglu,et al.  Saddle-point dynamics of a Yang–Mills field on the exterior Schwarzschild spacetime , 2010, 1005.1708.

[69]  Anil Zenginoglu,et al.  Hyperboloidal evolution of test fields in three spatial dimensions , 2010, 1004.0760.

[70]  J. L. Jaramillo,et al.  Mass and Angular Momentum in General Relativity , 2010, 1001.5429.

[71]  Anil Zenginoglu,et al.  Asymptotics of black hole perturbations , 2009 .

[72]  L. Szabados Quasi-Local Energy-Momentum and Angular Momentum in General Relativity , 2009, Living reviews in relativity.

[73]  Anil Zenginoglu,et al.  Spacelike matching to null infinity , 2009, 0906.3342.

[74]  Vitor Cardoso,et al.  Quasinormal modes of black holes and black branes , 2009, 0905.2975.

[75]  M. Tiglio,et al.  Complete gauge-invariant formalism for arbitrary second-order perturbations of a Schwarzschild black hole , 2009, 0903.1134.

[76]  Anil Zenginoglu,et al.  Gravitational perturbations of Schwarzschild spacetime at null infinity and the hyperboloidal initial value problem , 2008, 0810.1929.

[77]  Anil Zenginoglu,et al.  A hyperboloidal study of tail decay rates for scalar and Yang–Mills fields , 2008 .

[78]  Anil Zenginoglu,et al.  Hyperboloidal foliations and scri-fixing , 2007, Classical and Quantum Gravity.

[79]  C. Will,et al.  Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA , 2005, gr-qc/0512160.

[80]  B. Krishnan,et al.  Black-hole spectroscopy: testing general relativity through gravitational-wave observations , 2003, gr-qc/0309007.

[81]  J. Frauendiener Conformal Infinity , 2000, Living reviews in relativity.

[82]  H. Nollert Quasinormal modes: the characteristic `sound' of black holes and neutron stars , 1999 .

[83]  Kostas D. Kokkotas,et al.  Quasi-Normal Modes of Stars and Black Holes , 1999, Living reviews in relativity.

[84]  B. Schutz,et al.  Gravitational waves from pulsating stars: Evolving the perturbation equations for a relativistic star , 1997, gr-qc/9704023.

[85]  Nollert About the significance of quasinormal modes of black holes. , 1996, Physical review. D, Particles and fields.

[86]  J. M. Aguirregabiria,et al.  Scattering by black holes: A Simulated potential approach , 1996 .

[87]  Leaver,et al.  Quasinormal modes of Reissner-Nordström black holes. , 1990, Physical review. D, Particles and fields.

[88]  E. W. Leaver,et al.  An analytic representation for the quasi-normal modes of Kerr black holes , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[89]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[90]  F. Tangherlini Schwarzschild field inn dimensions and the dimensionality of space problem , 1963 .

[91]  [Book] Electrons And Phonons The Theory Of Transport Phenomena In Solids Oxford Classic Texts In The Physical Sciences , 2021 .

[92]  A. Zenginou A conformal approach to numerical calculations of asymptotically flat spacetimes , 2007 .

[93]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .