Recent Progress in Metal Halide Perovskite Micro‐ and Nanolasers

[1]  Qingsheng Zeng,et al.  Periodic Organic–Inorganic Halide Perovskite Microplatelet Arrays on Silicon Substrates for Room‐Temperature Lasing , 2016, Advanced science.

[2]  Y. Kanemitsu,et al.  Free Excitons and Exciton-Phonon Coupling in CH3NH3PbI3 Single Crystals Revealed by Photocurrent and Photoluminescence Measurements at Low Temperatures. , 2016, The journal of physical chemistry letters.

[3]  M. Bayer,et al.  Negatively Charged and Dark Excitons in CsPbBr3 Perovskite Nanocrystals Revealed by High Magnetic Fields. , 2017, Nano letters.

[4]  D. Kabra,et al.  Role of Localized States in Photoluminescence Dynamics of High Optical Gain CsPbBr3 Nanocrystals , 2018 .

[5]  Nripan Mathews,et al.  Spectral Features and Charge Dynamics of Lead Halide Perovskites: Origins and Interpretations. , 2016, Accounts of chemical research.

[6]  J. Hollingsworth,et al.  Effect of zero- to one-dimensional transformation on multiparticle Auger recombination in semiconductor quantum rods. , 2003, Physical review letters.

[7]  Handong Sun,et al.  Advances and Prospects for Whispering Gallery Mode Microcavities , 2015 .

[8]  Cherie R. Kagan,et al.  Direct Observation of Electron-Phonon Coupling and Slow Vibrational Relaxation in Organic-Inorganic Hybrid Perovskites. , 2016, Journal of the American Chemical Society.

[9]  M. Castro,et al.  Optical Investigation of Broadband White-Light Emission in Self-Assembled Organic–Inorganic Perovskite (C6H11NH3)2PbBr4 , 2015 .

[10]  Rui Wang,et al.  Fabry-Pérot Oscillation and Room Temperature Lasing in Perovskite Cube-Corner Pyramid Cavities. , 2018, Small.

[11]  Bin Su,et al.  “Liquid Knife” to Fabricate Patterning Single‐Crystalline Perovskite Microplates toward High‐Performance Laser Arrays , 2016, Advanced materials.

[12]  Q. Gong,et al.  High Stability and Ultralow Threshold Amplified Spontaneous Emission from Formamidinium Lead Halide Perovskite Films , 2017 .

[13]  Qing Liao,et al.  Perovskite Microdisk Microlasers Self‐Assembled from Solution , 2015, Advanced materials.

[14]  Wei Huang,et al.  Efficient recycling of trapped energies for dual-emission in Mn-doped perovskite nanocrystals , 2018, Nano Energy.

[15]  H. Zeng,et al.  Nonlinear Absorption and Low-Threshold Multiphoton Pumped Stimulated Emission from All-Inorganic Perovskite Nanocrystals. , 2016, Nano letters.

[16]  J. B. Baxter,et al.  Slow Electron–Hole Recombination in Lead Iodide Perovskites Does Not Require a Molecular Dipole , 2017 .

[17]  Henry J. Snaith,et al.  Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites , 2015, 1504.07025.

[18]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[19]  M. Bonn,et al.  Quantifying Polaron Formation and Charge Carrier Cooling in Lead‐Iodide Perovskites , 2018, Advanced materials.

[20]  C. Soci,et al.  Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites , 2017 .

[21]  J. Yao,et al.  A Two-Dimensional Ruddlesden-Popper Perovskite Nanowire Laser Array based on Ultrafast Light-Harvesting Quantum Wells. , 2018, Angewandte Chemie.

[22]  Haizheng Zhong,et al.  Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. , 2015, ACS nano.

[23]  Xiaoyang Zhu,et al.  Large polarons in lead halide perovskites , 2017, Science Advances.

[24]  Donal D. C. Bradley,et al.  Light amplification and gain in polyfluorene waveguides , 2002 .

[25]  X. Zhu,et al.  Mechanism for Broadband White-Light Emission from Two-Dimensional (110) Hybrid Perovskites. , 2016, The journal of physical chemistry letters.

[26]  Edward H Sargent,et al.  Conformal organohalide perovskites enable lasing on spherical resonators. , 2014, ACS nano.

[27]  Gautam Gupta,et al.  Polaron Stabilization by Cooperative Lattice Distortion and Cation Rotations in Hybrid Perovskite Materials. , 2016, Nano letters.

[28]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[29]  H. Tahara,et al.  Dynamics of Charged Excitons and Biexcitons in CsPbBr3 Perovskite Nanocrystals Revealed by Femtosecond Transient-Absorption and Single-Dot Luminescence Spectroscopy. , 2017, The journal of physical chemistry letters.

[30]  Edward P. Booker,et al.  Vertical Cavity Biexciton Lasing in 2D Dodecylammonium Lead Iodide Perovskites , 2018, Advanced Optical Materials.

[31]  S. Xiao,et al.  Formation of Lead Halide Perovskite Based Plasmonic Nanolasers and Nanolaser Arrays by Tailoring the Substrate. , 2018, ACS nano.

[32]  H. Zeng,et al.  Monolayer and Few‐Layer All‐Inorganic Perovskites as a New Family of Two‐Dimensional Semiconductors for Printable Optoelectronic Devices , 2016, Advanced materials.

[33]  Xinping Zhang,et al.  Two-photon pumped amplified spontaneous emission based on all-inorganic perovskite nanocrystals embedded with gold nanorods , 2018, Optical Materials.

[34]  S. Tretiak,et al.  Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites , 2017, Science.

[35]  Kaiyang Wang,et al.  Recent Advances in Perovskite Micro‐ and Nanolasers , 2018, Advanced Optical Materials.

[36]  Jiwon Bang,et al.  Temperature-Dependent Photoluminescence of Cesium Lead Halide Perovskite Quantum Dots: Splitting of the Photoluminescence Peaks of CsPbBr3 and CsPb(Br/I)3 Quantum Dots at Low Temperature , 2017 .

[37]  Oleksandr Voznyy,et al.  Perovskite energy funnels for efficient light-emitting diodes. , 2016, Nature nanotechnology.

[38]  Theo Siegrist,et al.  One-dimensional organic lead halide perovskites with efficient bluish white-light emission , 2017, Nature Communications.

[39]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[40]  K. Vahala Optical microcavities , 2003, Nature.

[41]  Linghai Xie,et al.  H‐Shaped Oligofluorenes for Highly Air‐Stable and Low‐Threshold Non‐Doped Deep Blue Lasing , 2014, Advanced materials.

[42]  Ying Yu,et al.  Continuous wave pumped single-mode nanolasers in inorganic perovskites with robust stability and high quantum yield. , 2018, Nanoscale.

[43]  H. Zeng,et al.  All‐Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics , 2015, Advanced materials.

[44]  Jun Wang,et al.  CsPbBr 3 perovskite quantum dots: saturable absorption properties and passively Q -switched visible lasers , 2017 .

[45]  Qidai Chen,et al.  Size-dependent one-photon- and two-photon-pumped amplified spontaneous emission from organometal halide CH3NH3PbBr3 perovskite cubic microcrystals. , 2017, Physical chemistry chemical physics : PCCP.

[46]  Xin Zhao,et al.  Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite , 2017, Nature communications.

[47]  Alexander L. Shluger,et al.  Trapping, self-trapping and the polaron family , 2007 .

[48]  Manas R. Parida,et al.  Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission. , 2015, The journal of physical chemistry letters.

[49]  Tze Chien Sum,et al.  Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. , 2014, Nano letters.

[50]  E. Hoke,et al.  Self-assembly of broadband white-light emitters. , 2014, Journal of the American Chemical Society.

[51]  Chunxiang Xu,et al.  Lasing mode evolution and regulation of the perovskite CH3NH3PbBr3 , 2017 .

[52]  L. Quan,et al.  Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent , 2018, Nature.

[53]  V. Klimov,et al.  Mn2+-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content. , 2016, Journal of the American Chemical Society.

[54]  Zhiqun Lin,et al.  Large‐Area Lasing and Multicolor Perovskite Quantum Dot Patterns , 2018, Advanced Optical Materials.

[55]  M. Kovalenko,et al.  Temperature Dependence of the Amplified Spontaneous Emission from CsPbBr3 Nanocrystal Thin Films , 2018 .

[56]  J. Zhong,et al.  Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr6 fluorophores , 2016 .

[57]  L. Manna,et al.  Benzoyl Halides as Alternative Precursors for the Colloidal Synthesis of Lead-Based Halide Perovskite Nanocrystals , 2018, Journal of the American Chemical Society.

[58]  S. Meloni,et al.  Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites , 2016, Science Advances.

[59]  J. Delcour,et al.  Selectivity for water-unextractable arabinoxylan and inhibition sensitivity govern the strong bread improving potential of an acidophilic GH11 Aureobasidium pullulans xylanase. , 2010 .

[60]  M. Sfeir,et al.  Ultrafast optical snapshots of hybrid perovskites reveal the origin of multiband electronic transitions , 2017 .

[61]  Yasuhiro Yamada,et al.  Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. , 2014, Journal of the American Chemical Society.

[62]  M. Johnston,et al.  Radiative Monomolecular Recombination Boosts Amplified Spontaneous Emission in HC(NH2)2SnI3 Perovskite Films. , 2016, The journal of physical chemistry letters.

[63]  Jianping Zhang,et al.  Stable, Ultralow Threshold Amplified Spontaneous Emission from CsPbBr3 Nanoparticles Exhibiting Trion Gain. , 2018, Nano letters.

[64]  Stephan W Koch,et al.  Measurement and calculation of gain spectra for (GaIn)As/(AlGa)As single quantum well lasers , 1998 .

[65]  Qiang Wu,et al.  Organic-inorganic perovskite plasmonic nanowire lasers with a low threshold and a good thermal stability. , 2016, Nanoscale.

[66]  G. Rainò,et al.  Nearly Temperature‐Independent Threshold for Amplified Spontaneous Emission in Colloidal CdSe/CdS Quantum Dot‐in‐Rods , 2012, Advanced materials.

[67]  J. Even,et al.  Neutral and Charged Exciton Fine Structure in Single Lead Halide Perovskite Nanocrystals Revealed by Magneto-optical Spectroscopy. , 2017, Nano letters.

[68]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[69]  Wei Huang,et al.  Super air stable quasi-2D organic-inorganic hybrid perovskites for visible light-emitting diodes. , 2018, Optics express.

[70]  G. Shao,et al.  Ruddlesden–Popper Perovskite for Stable Solar Cells , 2018, Energy & Environmental Materials.

[71]  Q. Gong,et al.  One-Step Co-Evaporation of All-Inorganic Perovskite Thin Films with Room-Temperature Ultralow Amplified Spontaneous Emission Threshold and Air Stability. , 2018, ACS applied materials & interfaces.

[72]  M. Saidaminov,et al.  The In‐Gap Electronic State Spectrum of Methylammonium Lead Iodide Single‐Crystal Perovskites , 2016, Advanced materials.

[73]  Tingting Shi,et al.  Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance , 2014, Advanced materials.

[74]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[75]  Wei‐Liang Chen,et al.  Low-Threshold Lasing from 2D Homologous Organic-Inorganic Hybrid Ruddlesden-Popper Perovskite Single Crystals. , 2018, Nano letters.

[76]  Alyssa N. Brigeman,et al.  Diode-Pumped Organo-Lead Halide Perovskite Lasing in a Metal-Clad Distributed Feedback Resonator. , 2016, Nano letters.

[77]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[78]  Sai Chen,et al.  A Review of Magneto-Optical Microstructure Devices at Terahertz Frequencies , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[79]  S. Xiao,et al.  Whispering-gallery-mode based CH3NH3PbBr3 perovskite microrod lasers with high quality factors , 2016, 1606.07542.

[80]  A. Pan,et al.  Space‐Confined Synthesis of 2D All‐Inorganic CsPbI3 Perovskite Nanosheets for Multiphoton‐Pumped Lasing , 2018, Advanced Optical Materials.

[81]  William W. Yu,et al.  Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers. , 2016, Journal of the American Chemical Society.

[82]  Shu-Wei Chang,et al.  Whispering gallery mode lasing from zinc oxide hexagonal nanodisks. , 2010, ACS nano.

[83]  Haibo Zeng,et al.  Amino‐Mediated Anchoring Perovskite Quantum Dots for Stable and Low‐Threshold Random Lasing , 2017, Advanced materials.

[84]  Laura M. Herz,et al.  Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. , 2016, Annual review of physical chemistry.

[85]  Yiping Wang,et al.  Van Der Waals Hybrid Perovskite of High Optical Quality by Chemical Vapor Deposition , 2017 .

[86]  Wenzhao Sun,et al.  Tunable perovskite microdisk lasers. , 2016, Nanoscale.

[87]  G. Fleming,et al.  Exciton and Free Charge Dynamics of Methylammonium Lead Iodide Perovskites Are Different in the Tetragonal and Orthorhombic Phases , 2015 .

[88]  T. Kondo,et al.  Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4 , 1998 .

[89]  Y. Leng,et al.  Perovskite CsPb2Br5 Microplate Laser with Enhanced Stability and Tunable Properties , 2017 .

[90]  D. Ginger,et al.  Biexciton Auger Recombination Differs in Hybrid and Inorganic Halide Perovskite Quantum Dots. , 2018, The journal of physical chemistry letters.

[91]  Shuai Liu,et al.  Two‐Photon Pumped CH3NH3PbBr3 Perovskite Microwire Lasers , 2016 .

[92]  Gengfeng Zheng,et al.  Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system , 2016 .

[93]  Tingting Xu,et al.  Near-infrared random lasing realized in a perovskite CH3NH3PbI3 thin film , 2016 .

[94]  X. Hou,et al.  All‐Inorganic Hetero‐Structured Cesium Tin Halide Perovskite Light‐Emitting Diodes With Current Density Over 900 A cm−2 and Its Amplified Spontaneous Emission Behaviors , 2018 .

[95]  C. Carbonaro,et al.  Can Trihalide Lead Perovskites Support Continuous Wave Lasing? , 2015 .

[96]  M. Fiebig,et al.  Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites , 2015, Nature Communications.

[97]  Single mode stimulated emission from prismlike gallium nitride submicron cavities , 2007 .

[98]  Felix Deschler,et al.  Research Update: Challenges for high-efficiency hybrid lead-halide perovskite LEDs and the path towards electrically pumped lasing , 2016 .

[99]  Ifor D. W. Samuel,et al.  Organic semiconductor lasers. , 2007 .

[100]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[101]  Yasuhiro Yamada,et al.  Free Carrier Radiative Recombination and Photon Recycling in Lead Halide Perovskite Solar Cell Materials , 2017 .

[102]  Xiaohong Yan,et al.  A High Performance Deep Blue Organic Laser Gain Material , 2017 .

[103]  Y. P. Varshni Temperature dependence of the energy gap in semiconductors , 1967 .

[104]  Yufeng Hu,et al.  Temperature dependent amplified spontaneous emission of vacuum annealed perovskite films , 2017 .

[105]  S. Xiao,et al.  The Role of Excitons on Light Amplification in Lead Halide Perovskites , 2016, Advanced materials.

[106]  X. Zhu,et al.  Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation , 2017, Science Advances.

[107]  V. Podzorov,et al.  Charge Carriers in Hybrid Organic-Inorganic Lead Halide Perovskites Might Be Protected as Large Polarons. , 2015, The journal of physical chemistry letters.

[108]  Minqiang Wang,et al.  Anomalous Temperature-Dependent Exciton–Phonon Coupling in Cesium Lead Bromide Perovskite Nanosheets , 2019, The Journal of Physical Chemistry C.

[109]  Abhishek Swarnkar,et al.  Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. , 2015, Angewandte Chemie.

[110]  M. Messing,et al.  Size- and Wavelength-Dependent Two-Photon Absorption Cross-Section of CsPbBr3 Perovskite Quantum Dots. , 2017, The journal of physical chemistry letters.

[111]  Lattice Thermal Conductivity of Organic-Inorganic Hybrid Perovskite CH3NH3PbI3 , 2015, 1512.09224.

[112]  Oleksandr Isaienko,et al.  Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots. , 2016, Nano letters.

[113]  Omar K Farha,et al.  2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. , 2015, Journal of the American Chemical Society.

[114]  J. Yao,et al.  Organic-Inorganic Hybrid Perovskite Nanowire Laser Arrays. , 2017, ACS nano.

[115]  S. Xiao,et al.  Unidirectional Lasing Emissions from CH3NH3PbBr3 Perovskite Microdisks , 2016 .

[116]  Guangda Niu,et al.  Lead-Free, Blue Emitting Bismuth Halide Perovskite Quantum Dots. , 2016, Angewandte Chemie.

[117]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[118]  A. Barker,et al.  Effect of Carrier Thermalization Dynamics on Light Emission and Amplification in Organometal Halide Perovskites. , 2015, The journal of physical chemistry letters.

[119]  Mohammed J. Al-Marri,et al.  Trap States and Their Dynamics in Organometal Halide Perovskite Nanoparticles and Bulk Crystals , 2016 .

[120]  Xiaoyang Zhu,et al.  Broad Wavelength Tunable Robust Lasing from Single-Crystal Nanowires of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). , 2016, ACS nano.

[121]  Y. Leng,et al.  Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots , 2016 .

[122]  A. Pan,et al.  Single-Mode Lasers Based on Cesium Lead Halide Perovskite Submicron Spheres. , 2017, ACS nano.

[123]  M. Saba,et al.  Excited State Properties of Hybrid Perovskites. , 2016, Accounts of chemical research.

[124]  Yanlin Song,et al.  Direct-Writing Multifunctional Perovskite Single Crystal Arrays by Inkjet Printing. , 2017, Small.

[125]  S. Mhaisalkar,et al.  Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films. , 2016, Physical chemistry chemical physics : PCCP.

[126]  Yuxin Leng,et al.  Robust Subwavelength Single-Mode Perovskite Nanocuboid Laser. , 2018, ACS nano.

[127]  Lucy D. Whalley,et al.  Slow Cooling of Hot Polarons in Halide Perovskite Solar Cells , 2017, ACS energy letters.

[128]  S. Lau,et al.  Amplified Spontaneous Emission from Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals under Direct Multiphoton Excitation , 2016 .

[129]  Feliciano Giustino,et al.  Electron–phonon coupling in hybrid lead halide perovskites , 2016, Nature Communications.

[130]  Song Jin,et al.  Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability. , 2016, Nano letters.

[131]  Song Jin,et al.  Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. , 2015, Nature materials.

[132]  Nakamura,et al.  Thermalization effect on radiative decay of excitons in quantum wires. , 1994, Physical review letters.

[133]  Qing Zhang,et al.  Strong Exciton-Photon Coupling and lasing behavior in All-Inorganic CsPbBr3 Micro/nanowire Fabry-Perot cavity , 2017, 1711.04919.

[134]  Song Jin,et al.  Continuous‐Wave Lasing in Cesium Lead Bromide Perovskite Nanowires , 2018 .

[135]  Markus Pollnau,et al.  Organic solid‐state integrated amplifiers and lasers , 2012 .

[136]  J. Hvam,et al.  Direct recording of optical‐gain spectra from ZnO , 1978 .

[137]  T. Zhai,et al.  Generalized Self-Doping Engineering towards Ultrathin and Large-Sized Two-Dimensional Homologous Perovskites. , 2017, Angewandte Chemie.

[138]  C. H. de Brito Cruz,et al.  Two-Photon Absorption and Two-Photon-Induced Gain in Perovskite Quantum Dots. , 2018, The journal of physical chemistry letters.

[139]  Zhizhong Chen,et al.  Merits and Challenges of Ruddlesden–Popper Soft Halide Perovskites in Electro‐Optics and Optoelectronics , 2018, Advanced materials.

[140]  A. Bhowmik Polygonal optical cavities. , 2000, Applied optics.

[141]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[142]  Wei Huang,et al.  Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence , 2017, Nature Communications.

[143]  Wenping Hu,et al.  Amplified Spontaneous Emission Based on 2D Ruddlesden–Popper Perovskites , 2018 .

[144]  Laura M. Herz,et al.  Temperature‐Dependent Charge‐Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films , 2015 .

[145]  Shu Hotta,et al.  Microdisk lasers and field effect transistors of thiophene/phenylene co-oligomers by using high temperature deposition method , 2010 .

[146]  R. E. Nahory,et al.  Optical gain in semiconductors , 1973 .

[147]  N. Wang,et al.  Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures , 2018, Nature.

[148]  Limin Tong,et al.  Semiconductor nanowire lasers , 2013 .

[149]  Zhongchang Wang,et al.  Recent advances of low-dimensional materials in lasing applications , 2018, FlatChem.

[150]  Jasmina A. Sichert,et al.  Colloidal lead halide perovskite nanocrystals: synthesis, optical properties and applications , 2016 .

[151]  D. Gamelin,et al.  Quantum-Cutting Ytterbium-Doped CsPb(Cl1–xBrx)3 Perovskite Thin Films with Photoluminescence Quantum Yields over 190% , 2018, ACS Energy Letters.

[152]  J. Frost Calculating polaron mobility in halide perovskites , 2017, 1704.05404.

[153]  P. Zory,et al.  Cavity length dependence of the threshold behavior in thin quantum well semiconductor lasers , 1987 .

[154]  Liyun Zhao,et al.  Advances in Small Perovskite‐Based Lasers , 2017 .

[155]  Wenzhi Wu,et al.  Temperature-dependent photoluminescence of CsPbX3 nanocrystal films , 2018, Journal of Luminescence.

[156]  Jinsong Hu,et al.  Controlling the Cavity Structures of Two‐Photon‐Pumped Perovskite Microlasers , 2016, Advanced materials.

[157]  Haizheng Zhong,et al.  Elucidating the phase transitions and temperature-dependent photoluminescence of MAPbBr3 single crystal , 2018 .

[158]  Matthew Pelton,et al.  Carrier Dynamics, Optical Gain, and Lasing with Colloidal Quantum Wells , 2018 .

[159]  Surface Plasmon Enhanced Strong Exciton-Photon Coupling in Hybrid Inorganic-Organic Perovskite Nanowires. , 2017, Nano letters.

[160]  J. Qu,et al.  All-inorganic CsPbBr3 perovskite quantum dots embedded in dual-mesoporous silica with moisture resistance for two-photon-pumped plasmonic nanoLasers. , 2018, Nanoscale.

[161]  Y. Kanemitsu,et al.  Near-Band-Edge Optical Responses of CH_{3}NH_{3}PbCl_{3} Single Crystals: Photon Recycling of Excitonic Luminescence. , 2018, Physical review letters.

[162]  Xi Yuan,et al.  Temperature-dependent photoluminescence of inorganic perovskite nanocrystal films , 2016 .

[163]  Prashant V Kamat,et al.  Intriguing Optoelectronic Properties of Metal Halide Perovskites. , 2016, Chemical reviews.

[164]  S. Muduli,et al.  Enhanced Exciton and Photon Confinement in Ruddlesden–Popper Perovskite Microplatelets for Highly Stable Low‐Threshold Polarized Lasing , 2018, Advanced materials.

[165]  Lih Y. Lin,et al.  CsPbBr3 Perovskite Quantum Dot Vertical Cavity Lasers with Low Threshold and High Stability , 2017 .

[166]  Qing Liao,et al.  Patterning Multicolored Microdisk Laser Arrays of Cesium Lead Halide Perovskite , 2017, Advanced materials.

[167]  Edward H. Sargent,et al.  Perovskite photonic sources , 2016, Nature Photonics.

[168]  T. Xu,et al.  Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section. , 2017, ACS nano.

[169]  Haibo Zeng,et al.  Solution‐Processed Low Threshold Vertical Cavity Surface Emitting Lasers from All‐Inorganic Perovskite Nanocrystals , 2017 .

[170]  Takashi Minemoto,et al.  Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield. , 2017, ACS nano.

[171]  Barry P. Rand,et al.  Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor , 2017, Nature Photonics.

[172]  M. Kovalenko,et al.  High‐Temperature Photoluminescence of CsPbX3 (X = Cl, Br, I) Nanocrystals , 2017 .

[173]  Anirban Dutta,et al.  Dot–Wire–Platelet–Cube: Step Growth and Structural Transformations in CsPbBr3 Perovskite Nanocrystals , 2018, ACS Energy Letters.

[174]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[175]  H. Zeng,et al.  Solution-Grown CsPbBr3 /Cs4 PbBr6 Perovskite Nanocomposites: Toward Temperature-Insensitive Optical Gain. , 2017, Small.

[176]  Victor I. Klimov,et al.  Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Nanocrystals , 2000 .

[177]  A. Lindenberg,et al.  A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. , 2016, Journal of the American Chemical Society.

[178]  M. Wasielewski,et al.  Tunable White-Light Emission in Single-Cation-Templated Three-Layered 2D Perovskites (CH3CH2NH3)4Pb3Br10-xClx. , 2017, Journal of the American Chemical Society.

[179]  Nripan Mathews,et al.  Low-temperature solution-processed wavelength-tunable perovskites for lasing. , 2014, Nature materials.

[180]  Chun-Hua Yan,et al.  Composition‐Graded Cesium Lead Halide Perovskite Nanowires with Tunable Dual‐Color Lasing Performance , 2018, Advanced materials.

[181]  Liyun Zhao,et al.  Low Threshold Fabry-Pérot Mode Lasing from Lead Iodide Trapezoidal Nanoplatelets. , 2018, Small.

[182]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[183]  Y. Kanemitsu,et al.  Radiative recombination and electron-phonon coupling in lead-free CH3NH3SnI3 perovskite thin films , 2018, Physical Review Materials.

[184]  D. J. Clark,et al.  Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors , 2016 .

[185]  Wei Huang,et al.  Two‐Photon Optical Properties in Individual Organic–Inorganic Perovskite Microplates , 2017 .

[186]  Tze Chien Sum,et al.  High‐Quality Whispering‐Gallery‐Mode Lasing from Cesium Lead Halide Perovskite Nanoplatelets , 2016 .

[187]  O. Voznyy,et al.  Efficient Biexciton Interaction in Perovskite Quantum Dots Under Weak and Strong Confinement. , 2016, ACS nano.

[188]  T. Mo,et al.  Wavelength-Tunable and Highly Stable Perovskite-Quantum-Dot-Doped Lasers with Liquid Crystal Lasing Cavities. , 2018, ACS applied materials & interfaces.

[189]  J. Hodgkiss,et al.  Using Bulk-like Nanocrystals To Probe Intrinsic Optical Gain Characteristics of Inorganic Lead Halide Perovskites. , 2018, ACS nano.

[190]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[191]  W. Cai,et al.  Highly reproducible-organometallic halide perovskite microdevices based on top-down lithography , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[192]  A. Bera,et al.  Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. , 2014, Physical chemistry chemical physics : PCCP.

[193]  Lin-wang Wang,et al.  Lasing in robust cesium lead halide perovskite nanowires , 2016, Proceedings of the National Academy of Sciences.

[194]  S. Xiao,et al.  Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers , 2017, Scientific Reports.

[195]  Tze Chien Sum,et al.  Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers. , 2015, Nano letters.

[196]  Oleksandr Voznyy,et al.  Perovskite Thin Films via Atomic Layer Deposition , 2015, Advanced materials.

[197]  Lin-wang Wang,et al.  Pseudopotential theory of Auger processes in CdSe quantum dots. , 2003, Physical review letters.

[198]  A. Pan,et al.  High-Quality In-Plane Aligned CsPbX3 Perovskite Nanowire Lasers with Composition-Dependent Strong Exciton-Photon Coupling. , 2018, ACS nano.

[199]  V. Klimov,et al.  Spectral dependence of nanocrystal photoionization probability: the role of hot-carrier transfer. , 2011, ACS nano.

[200]  A. Efros,et al.  Random Telegraph Signal in the Photoluminescence Intensity of a Single Quantum Dot , 1997 .

[201]  O. Bakr,et al.  Doping-Enhanced Short-Range Order of Perovskite Nanocrystals for Near-Unity Violet Luminescence Quantum Yield. , 2018, Journal of the American Chemical Society.

[202]  Slow Auger Recombination of Charged Excitons in Nonblinking Perovskite Nanocrystals without Spectral Diffusion. , 2016, Nano letters.

[203]  P. Liu,et al.  2D Ruddlesden–Popper Perovskites Microring Laser Array , 2018, Advanced materials.

[204]  Yujing Li,et al.  Recent advances toward practical use of halide perovskite nanocrystals , 2018 .

[205]  E. Alarousu,et al.  Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation , 2018, ACS Energy Letters.

[206]  Ling-yi Huang,et al.  Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl 3 , CsSnBr 3 , and CsSnI 3 , 2013 .

[207]  Matthew R. Leyden,et al.  Amplified spontaneous emission in phenylethylammonium methylammonium lead iodide quasi-2D perovskites. , 2018, Physical chemistry chemical physics : PCCP.

[208]  Tian Jiang,et al.  Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots. , 2016, Optics letters.

[209]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[210]  Shaojun Guo,et al.  Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots. , 2015, ACS nano.

[211]  Nana Wang,et al.  Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells , 2016, Nature Photonics.

[212]  O. Voznyy,et al.  Electron–phonon interaction in efficient perovskite blue emitters , 2018, Nature Materials.

[213]  Shu Hotta,et al.  Reduced Lasing Threshold in Thiophene/Phenylene Co-Oligomer Crystalline Microdisks , 2009 .

[214]  Yani Chen,et al.  2D Ruddlesden–Popper Perovskites for Optoelectronics , 2018, Advanced materials.

[215]  R. Friend,et al.  Size-Dependent Photon Emission from Organometal Halide Perovskite Nanocrystals Embedded in an Organic Matrix , 2015, The journal of physical chemistry letters.

[216]  Guangda Niu,et al.  Efficient and stable emission of warm-white light from lead-free halide double perovskites , 2018, Nature.

[217]  A. Malko,et al.  Optical gain and stimulated emission in nanocrystal quantum dots. , 2000, Science.

[218]  M. Kanatzidis,et al.  Strong Electron–Phonon Coupling and Self-Trapped Excitons in the Defect Halide Perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb) , 2017 .

[219]  Jeunghee Park,et al.  Light-Matter Interactions in Cesium Lead Halide Perovskite Nanowire Lasers. , 2016, The journal of physical chemistry letters.

[220]  A. Pan,et al.  Ultrahigh Quality Upconverted Single‐Mode Lasing in Cesium Lead Bromide Spherical Microcavity , 2018, Advanced Optical Materials.

[221]  A. Rao,et al.  Real-Time Observation of Exciton-Phonon Coupling Dynamics in Self-Assembled Hybrid Perovskite Quantum Wells. , 2017, ACS nano.

[222]  Michael Grätzel,et al.  First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications , 2013 .

[223]  Y. Leng,et al.  Robust Cesium Lead Halide Perovskite Microcubes for Frequency Upconversion Lasing , 2017 .