Likelihood analysis of joint marginal and conditional models for longitudinal categorical data.

The authors develop a Markov model for the analysis of longitudinal categorical data which facilitates modelling both marginal and conditional structures. A likelihood formulation is employed for inference, so the resulting estimators enjoy the optimal properties such as efficiency and consistency, and remain consistent when data are missing at random. Simulation studies demonstrate that the proposed method performs well under a variety of situations. Application to data from a smoking prevention study illustrates the utility of the model and interpretation of covariate effects. The Canadian Journal of Statistics © 2009 Statistical Society of Canada Les auteurs developpent un modele de Markov pour l'analyse de donnees categorielles longitudinales facilitant la representation des structures marginales et conditionnelles. L'inference est basee sur une fonction de vraisemblance afin d'obtenir des estimateurs efficaces, coherents et qui le demeurent lorsqu'il y a des donnees manquantes au hasard. Des etudes de simulation montrent que la methode proposee se comporte bien dans les differents scenarios consideres. L'application a des donnees provenant d'une etude sur la lutte contre le tabagisme illustre bien l'utilite de ce modele et permet une interpretation des effets des covariables. La revue canadienne de statistique © 2009 Societe statistique du Canada

[1]  Patrick J Heagerty,et al.  Marginalized Transition Models and Likelihood Inference for Longitudinal Categorical Data , 2002, Biometrics.

[2]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[3]  J. Kalbfleisch,et al.  The Analysis of Panel Data under a Markov Assumption , 1985 .

[4]  S. Lipsitz,et al.  Likelihood Methods for Incomplete Longitudinal Binary Responses with Incomplete Categorical Covariates , 1999, Biometrics.

[5]  Geert Verbeke,et al.  Pairwise Fitting of Mixed Models for the Joint Modeling of Multivariate Longitudinal Profiles , 2006, Biometrics.

[6]  A. Azzalini Logistic regression for autocorrelated data with application to repeated measures , 1994 .

[7]  Michelle Shardell,et al.  Weighted estimating equations for longitudinal studies with death and non‐monotone missing time‐dependent covariates and outcomes , 2008, Statistics in medicine.

[8]  S. Zeger,et al.  Multivariate Regression Analyses for Categorical Data , 1992 .

[9]  Scott L. Zeger,et al.  Marginalized Multilevel Models and Likelihood Inference , 2000 .

[10]  D. Cox,et al.  A note on pseudolikelihood constructed from marginal densities , 2004 .

[11]  K. Brown,et al.  Effectiveness of a social influences smoking prevention program as a function of provider type, training method, and school risk. , 1999, American journal of public health.

[12]  S. Lipsitz,et al.  Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable , 2001 .

[13]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[14]  R. Royall Model robust confidence intervals using maximum likelihood estimators , 1986 .

[15]  D. Cox,et al.  Inference and Asymptotics , 1994 .

[16]  J M Neuhaus,et al.  Statistical methods for longitudinal and clustered designs with binary responses , 1992, Statistical methods in medical research.

[17]  Kalyan Das,et al.  Miscellanea. On the efficiency of regression estimators in generalised linear models for longitudinal data , 1999 .

[18]  James M. Robins,et al.  Semiparametric Regression for Repeated Outcomes With Nonignorable Nonresponse , 1998 .

[19]  Richard J. Cook,et al.  Transition Models for Multivariate Longitudinal Binary Data , 2007 .

[20]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[21]  Richard J Cook,et al.  A generalized mover-stayer model for panel data. , 2002, Biostatistics.

[22]  Michael J Daniels,et al.  A class of markov models for longitudinal ordinal data. , 2007, Biometrics.

[23]  R. Prentice,et al.  Correlated binary regression with covariates specific to each binary observation. , 1988, Biometrics.

[24]  P. Diggle,et al.  Analysis of Longitudinal Data , 2003 .

[25]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[26]  L. Zhao,et al.  Correlated binary regression using a quadratic exponential model , 1990 .

[27]  Andrea Rotnitzky,et al.  Regression Models for Discrete Longitudinal Responses , 1993 .