MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization

Molecule optimization is a fundamental task for accelerating drug discovery, with the goal of generating new valid molecules that maximize multiple drug properties while maintaining similarity to the input molecule. Existing generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties. To address such challenges, we propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution. MIMOSA first pretrains two property agnostic graph neural networks (GNNs) for molecule topology and substructure-type prediction, where a substructure can be either atom or single ring. For each iteration, MIMOSA uses the GNNs' prediction and employs three basic substructure operations (add, replace, delete) to generate new molecules and associated weights. The weights can encode multiple constraints including similarity and drug property constraints, upon which we select promising molecules for next iteration. MIMOSA enables flexible encoding of multiple property- and similarity-constraints and can efficiently generate new molecules that satisfy various property constraints and achieved up to 49.6% relative improvement over the best baseline in terms of success rate.

[1]  Nicola De Cao,et al.  MolGAN: An implicit generative model for small molecular graphs , 2018, ArXiv.

[2]  Regina Barzilay,et al.  Composing Molecules with Multiple Property Constraints , 2020, ICML 2020.

[3]  Igor I. Baskin,et al.  Chapter 1:Fragment Descriptors in SAR/QSAR/QSPR Studies, Molecular Similarity Analysis and in Virtual Screening , 2008 .

[4]  Alexandre Varnek,et al.  Estimation of the size of drug-like chemical space based on GDB-17 data , 2013, Journal of Computer-Aided Molecular Design.

[5]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[6]  Olexandr Isayev,et al.  Deep reinforcement learning for de novo drug design , 2017, Science Advances.

[7]  Thomas Blaschke,et al.  Molecular de-novo design through deep reinforcement learning , 2017, Journal of Cheminformatics.

[8]  T. Jaakkola,et al.  Hierarchical Graph-to-Graph Translation for Molecules , 2019 .

[9]  Alán Aspuru-Guzik,et al.  Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space , 2020, ICLR.

[10]  Zhihua Zhang,et al.  CPSG-MCMC: Clustering-Based Preprocessing method for Stochastic Gradient MCMC , 2017, AISTATS.

[11]  Alán Aspuru-Guzik,et al.  Reinforced Adversarial Neural Computer for de Novo Molecular Design , 2018, J. Chem. Inf. Model..

[12]  Matt J. Kusner,et al.  Grammar Variational Autoencoder , 2017, ICML.

[13]  Zhihua Zhang,et al.  Quasi-Newton Hamiltonian Monte Carlo , 2016, UAI.

[14]  Richard A. Levine,et al.  Optimizing random scan Gibbs samplers , 2006 .

[15]  Jun S. Liu,et al.  The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .

[16]  William L. Jorgensen,et al.  Journal of Chemical Information and Modeling , 2005, J. Chem. Inf. Model..

[17]  Jimeng Sun,et al.  DeepPurpose: a deep learning library for drug–target interaction prediction , 2020, Bioinform..

[18]  Jimeng Sun,et al.  CORE: Automatic Molecule Optimization Using Copy & Refine Strategy , 2019, AAAI.

[19]  Peter Ertl,et al.  Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions , 2009, J. Cheminformatics.

[20]  Regina Barzilay,et al.  Multi-Objective Molecule Generation using Interpretable Substructures , 2020, ICML.

[21]  Steven Skiena,et al.  Syntax-Directed Variational Autoencoder for Structured Data , 2018, ICLR.

[22]  Regina Barzilay,et al.  Multi-resolution Autoregressive Graph-to-Graph Translation for Molecules , 2019, ArXiv.

[23]  Qi Liu,et al.  Constrained Graph Variational Autoencoders for Molecule Design , 2018, NeurIPS.

[24]  D. Comings,et al.  Dopamine D2 receptor (DRD2) gene and susceptibility to posttraumatic stress disorder: A study and replication , 1996, Biological Psychiatry.

[25]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  G. V. Paolini,et al.  Quantifying the chemical beauty of drugs. , 2012, Nature chemistry.

[27]  Regina Barzilay,et al.  Learning Multimodal Graph-to-Graph Translation for Molecular Optimization , 2018, ICLR.

[28]  Li Li,et al.  Optimization of Molecules via Deep Reinforcement Learning , 2018, Scientific Reports.

[29]  John J. Irwin,et al.  ZINC 15 – Ligand Discovery for Everyone , 2015, J. Chem. Inf. Model..

[30]  A. Zhavoronkov Artificial Intelligence for Drug Discovery, Biomarker Development, and Generation of Novel Chemistry. , 2018, Molecular pharmaceutics.

[31]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[32]  Jure Leskovec,et al.  Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation , 2018, NeurIPS.

[33]  Marinka Zitnik,et al.  MolDesigner: Interactive Design of Efficacious Drugs with Deep Learning , 2020, ArXiv.

[34]  Regina Barzilay,et al.  Junction Tree Variational Autoencoder for Molecular Graph Generation , 2018, ICML.

[35]  Jure Leskovec,et al.  Strategies for Pre-training Graph Neural Networks , 2020, ICLR.

[36]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[37]  Thomas Blaschke,et al.  Application of Generative Autoencoder in De Novo Molecular Design , 2017, Molecular informatics.

[38]  J. Rosenthal,et al.  Markov Chain Monte Carlo , 2018 .

[39]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..