Integration of electrocatalysts with silicon microcone arrays for minimization of optical and overpotential losses during sunlight-driven hydrogen evolution

Microstructured photoelectrode morphologies can advantageously facilitate integration of optically absorbing electrocatalysts with semiconducting light absorbers.

[1]  D. Chanda,et al.  Broadband angle-independent antireflection coatings on nanostructured light trapping solar cells , 2018 .

[2]  H. Gardeniers,et al.  Spatial decoupling of light absorption and catalytic activity of Ni–Mo-loaded high-aspect-ratio silicon microwire photocathodes , 2018 .

[3]  Kimberly M. Papadantonakis,et al.  Hydrogen Evolution with Minimal Parasitic Light Absorption by Dense Co–P Catalyst Films on Structured p-Si Photocathodes , 2018 .

[4]  Wen-Hui Cheng,et al.  Monolithic Photoelectrochemical Device for Direct Water Splitting with 19% Efficiency , 2017, ACS Energy Letters.

[5]  Zhengshan J. Yu,et al.  Silicon heterojunction solar cells with effectively transparent front contacts , 2017 .

[6]  James L. Young,et al.  Printed assemblies of GaAs photoelectrodes with decoupled optical and reactive interfaces for unassisted solar water splitting , 2017, Nature Energy.

[7]  Binying Yang,et al.  A p-Si/NiCoSex core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production , 2016 .

[8]  Colton R. Bukowsky,et al.  Effectively Transparent Front Contacts for Optoelectronic Devices , 2016 .

[9]  Colton R. Bukowsky,et al.  Near-Unity Unselective Absorption in Sparse InP Nanowire Arrays , 2016 .

[10]  Nathan S. Lewis,et al.  Enhanced Absorption and <1% Spectrum-and-Angle-Averaged Reflection in Tapered Microwire Arrays , 2016 .

[11]  N. Lewis,et al.  Profiling Photoinduced Carrier Generation in Semiconductor Microwire Arrays via Photoelectrochemical Metal Deposition. , 2016, Nano letters.

[12]  S. Rühle Tabulated values of the Shockley–Queisser limit for single junction solar cells , 2016 .

[13]  L. Bourgeois,et al.  Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon , 2016, Nature Communications.

[14]  Hung-Chih Chang,et al.  Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. , 2015, Nature materials.

[15]  R. Hamers,et al.  Designing Efficient Solar‐Driven Hydrogen Evolution Photocathodes Using Semitransparent MoQxCly (Q = S, Se) Catalysts on Si Micropyramids , 2015, Advanced materials.

[16]  Nathan S. Lewis,et al.  A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films , 2015 .

[17]  Maor F. Baruch,et al.  Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. , 2015, Chemical reviews.

[18]  Adam C. Nielander,et al.  Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation , 2015 .

[19]  James R. McKone,et al.  Functional integration of Ni–Mo electrocatalysts with Si microwire array photocathodes to simultaneously achieve high fill factors and light-limited photocurrent densities for solar-driven hydrogen evolution , 2015 .

[20]  Lifeng Liu,et al.  Silicon nanowire arrays coupled with cobalt phosphide spheres as low-cost photocathodes for efficient solar hydrogen evolution. , 2015, Chemical communications.

[21]  N. Lewis,et al.  A quantitative analysis of the efficiency of solar-driven water-splitting device designs based on tandem photoabsorbers patterned with islands of metallic electrocatalysts , 2015 .

[22]  N. Lewis,et al.  Unassisted solar-driven photoelectrosynthetic HI splitting using membrane-embedded Si microwire arrays , 2015 .

[23]  N. Lewis,et al.  Comparison of the Performance of CoP-Coated and Pt-Coated Radial Junction n(+)p-Silicon Microwire-Array Photocathodes for the Sunlight-Driven Reduction of Water to H2(g). , 2015, The journal of physical chemistry letters.

[24]  K. Sun,et al.  High-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution. , 2015, Nano letters.

[25]  Seong J. Cho,et al.  Three-dimensionally designed anti-reflective silicon surfaces for perfect absorption of light. , 2014, Chemical communications.

[26]  N. Lewis,et al.  CoP as an Acid-Stable Active Electrocatalyst for the Hydrogen-Evolution Reaction: Electrochemical Synthesis, Interfacial Characterization and Performance Evaluation , 2014 .

[27]  B. Hoex,et al.  Black silicon: fabrication methods, properties and solar energy applications , 2014 .

[28]  H. Misawa,et al.  Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. , 2014, Angewandte Chemie.

[29]  Heinrich Kurz,et al.  Heavily doped Si:P emitters of crystalline Si solar cells: recombination due to phosphorus precipitation , 2014 .

[30]  Harry A Atwater,et al.  Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation. , 2014, Optics Express.

[31]  B. Wiley,et al.  Optically transparent hydrogen evolution catalysts made from networks of copper–platinum core–shell nanowires , 2014 .

[32]  Matthew R. Shaner,et al.  Photoelectrochemistry of core–shell tandem junction n–p^+-Si/n-WO_3 microwire array photoelectrodes , 2014 .

[33]  Nathan S. Lewis,et al.  Silicon Microwire Arrays for Solar Energy-Conversion Applications , 2014 .

[34]  Dunwei Wang,et al.  Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition. , 2013, Angewandte Chemie.

[35]  H. Atwater,et al.  Flexible, Transparent Contacts for Inorganic Nanostructures and Thin Films , 2013, Advanced materials.

[36]  James R. McKone,et al.  Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes , 2012 .

[37]  Bhupendra Kumar,et al.  Photochemical and photoelectrochemical reduction of CO2. , 2012, Annual review of physical chemistry.

[38]  I. Oh,et al.  Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. , 2012, Nano letters.

[39]  Ville Jokinen,et al.  Non‐Reflecting Silicon and Polymer Surfaces by Plasma Etching and Replication , 2011, Advanced materials.

[40]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[41]  Nathan S. Lewis,et al.  Repeated epitaxial growth and transfer of arrays of patterned, vertically aligned, crystalline Si wires from a single Si(111) substrate , 2008 .

[42]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[43]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[44]  Pierre Mialhe,et al.  The diode quality factor of solar cells under illumination , 1986 .

[45]  E. Yablonovitch Statistical ray optics , 1982 .

[46]  N. Lewis,et al.  Si/TiO2 Tandem-Junction Microwire Arrays for Unassisted Solar-Driven Water Splitting , 2016 .