A short introduction to the Lindblad master equation

The theory of open quantum system is one of the most essential tools for the development of quantum technologies. Furthermore, the Lindblad (or Gorini-Kossakowski-Sudarshan-Lindblad) Master Equation plays a key role as it is the most general generator of Markovian dynamics in quantum systems. In this paper, we present this equation together with its derivation and methods of resolution. The presentation tries to be as self-contained and straightforward as possible to be useful to readers with no previous knowledge of this field.

[1]  T. Prosen Open XXZ spin chain: nonequilibrium steady state and a strict bound on ballistic transport. , 2011, Physical review letters.

[2]  Markus Tiersch,et al.  Quantum transport efficiency and Fourier's law. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  N. Mermin Quantum theory: Concepts and methods , 1997 .

[4]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[5]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[6]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[7]  Robust entanglement through macroscopic quantum jumps. , 2005, Physical review letters.

[8]  William H. Press,et al.  Numerical recipes , 1990 .

[9]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[10]  F. Intravaia,et al.  Modified dipole-dipole interaction and dissipation in an atomic ensemble near surfaces , 2018, Physical Review A.

[11]  Englert,et al.  Quantum optical master equations: The use of damping bases. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[12]  J. P. Garrahan,et al.  Facilitated spin models of dissipative quantum glasses. , 2012, Physical review letters.

[13]  D. Manzano,et al.  Harnessing symmetry to control quantum transport , 2017, 1707.07895.

[14]  D. Manzano Quantum Transport in Networks and Photosynthetic Complexes at the Steady State , 2012, PloS one.

[15]  Todd A. Brun Continuous measurements, quantum trajectories, and decoherent histories , 2000 .

[16]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[17]  Judah L. Schwartz,et al.  Computer-Generated Motion Pictures of One-Dimensional Quantum-Mechanical Transmission and Reflection Phenomena , 1967 .

[18]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[19]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[20]  S. Lloyd,et al.  Environment-assisted quantum walks in photosynthetic energy transfer. , 2008, The Journal of chemical physics.

[21]  D. Manzano,et al.  Symmetry and the thermodynamics of currents in open quantum systems , 2013, 1310.7370.

[22]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[23]  David E. Evans Irreducible quantum dynamical semigroups , 1977 .

[24]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[25]  A. G. Redfield,et al.  The Theory of Relaxation Processes , 1965 .

[26]  Jianshu Cao,et al.  Dynamical signatures of molecular symmetries in nonequilibrium quantum transport , 2016, Scientific Reports.

[27]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[28]  Michael Riesch,et al.  Analyzing the positivity preservation of numerical methods for the Liouville-von Neumann equation , 2018, J. Comput. Phys..

[29]  Maximilian Schlosshauer-Selbach Decoherence and the quantum-to-classical transition , 2008 .

[30]  Bernhard H. Haak,et al.  Open Quantum Systems , 2019, Tutorials, Schools, and Workshops in the Mathematical Sciences.

[31]  J. Herod Introduction to Hilbert spaces with applications , 1990 .

[32]  H. Hanche-Olsen,et al.  The generators of positive semigroups , 1979 .

[33]  An atomic symmetry-controlled thermal switch , 2015, Scientific reports.

[34]  Victor V. Albert,et al.  Symmetries and conserved quantities in Lindblad master equations , 2013, 1310.1523.

[36]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[37]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[38]  T. Prosen,et al.  A note on symmetry reductions of the Lindblad equation: transport in constrained open spin chains , 2012, 1203.0943.