Discriminative learning can succeed where generative learning fails
暂无分享,去创建一个
[1] David Haussler,et al. Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.
[2] Vladimir Vapnik. Estimations of dependences based on statistical data , 1982 .
[3] Paul W. Goldberg. When Can Two Unsupervised Learners Achieve PAC Separation? , 2001, COLT/EuroCOLT.
[4] David G. Stork,et al. Pattern Classification (2nd ed.) , 1999 .
[5] Michael I. Jordan,et al. On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.
[6] Tony Jebara,et al. Machine learning: Discriminative and generative , 2006 .
[7] V. Vapnik. Estimation of Dependences Based on Empirical Data , 2006 .
[8] Paul W. Goldberg,et al. Some Discriminant-Based PAC Algorithms , 2006, J. Mach. Learn. Res..
[9] Silvio Micali,et al. How to construct random functions , 1986, JACM.
[10] Oded Goldreich. Foundations of Cryptography: Volume 1 , 2006 .
[11] Leslie G. Valiant,et al. A general lower bound on the number of examples needed for learning , 1988, COLT '88.
[12] Rocco A. Servedio,et al. Discriminative learning can succeed where generative learning fails , 2007, Inf. Process. Lett..
[13] Leslie G. Valiant,et al. A theory of the learnable , 1984, CACM.
[14] David G. Stork,et al. Pattern Classification , 1973 .
[16] Leonid A. Levin,et al. A Pseudorandom Generator from any One-way Function , 1999, SIAM J. Comput..
[17] Rajat Raina,et al. Classification with Hybrid Generative/Discriminative Models , 2003, NIPS.
[18] Shigeo Abe DrEng. Pattern Classification , 2001, Springer London.