Using Entropy to Impute Missing Data in a Classification Task
暂无分享,去创建一个
[1] Gustavo E. A. P. A. Batista,et al. An analysis of four missing data treatment methods for supervised learning , 2003, Appl. Artif. Intell..
[2] Mingxiu Hu,et al. EVALUATION OF SOME POPULAR IMPUTATION ALGORITHMS , 2002 .
[3] Gene H. Golub,et al. Missing value estimation for DNA microarray gene expression data: local least squares imputation , 2005, Bioinform..
[4] Thomas G. Dietterich. What is machine learning? , 2020, Archives of Disease in Childhood.
[5] Ying Zou,et al. Evaluation and automatic selection of methods for handling missing data , 2005, 2005 IEEE International Conference on Granular Computing.
[6] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..
[7] Suchada Supattathum. Statistical Power of Modified Bonferroni Methods. , 1994 .
[8] Thomas G. Dietterich. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.
[9] D. Rubin,et al. Statistical Analysis with Missing Data , 1988 .
[10] J. Ross Quinlan,et al. Induction of Decision Trees , 1986, Machine Learning.
[11] Carlos Soares,et al. A Comparison of Ranking Methods for Classification Algorithm Selection , 2000, ECML.
[12] Edgar Acuña,et al. The Treatment of Missing Values and its Effect on Classifier Accuracy , 2004 .
[13] Thanh Ha Dang,et al. Utilisation de l'entropie pour substituer des données manquantes symboliques dans un problème de classification supervisée , 2006 .
[14] Jerzy W. Grzymala-Busse,et al. A Comparison of Several Approaches to Missing Attribute Values in Data Mining , 2000, Rough Sets and Current Trends in Computing.