The magnetic properties prediction and composition design of La-Co substitution Sr-hexaferrite based on high-through experiments and machine learning

[1]  Caspar Daniel Adenutsi,et al.  Hybrid application of unsupervised and supervised learning in forecasting absolute open flow potential for shale gas reservoirs , 2021, Energy.

[2]  P. A. Azar,et al.  Implementing Machine Learning in Laboratory Synthesis by Hybrid of SVR Model and Optimization Algorithms , 2021, Advanced Theory and Simulations.

[3]  Sumit Singh Chauhan,et al.  A review on genetic algorithm: past, present, and future , 2020, Multim. Tools Appl..

[4]  Fengpeng Lai,et al.  A novel multi-objective optimization method for well control parameters based on PSO-LSSVR proxy model and NSGA-II algorithm , 2021 .

[5]  H. Nakamura,et al.  Magnetic anisotropies of La–Co substituted M-type Sr hexaferrites studied by 57Fe Mössbauer spectroscopy with external magnetic fields , 2020 .

[6]  Young-Min Kang,et al.  Effect of Ca and La substitution on the structure and magnetic properties of M-type Sr-hexaferrites , 2019, Journal of Alloys and Compounds.

[7]  Y. Tokunaga,et al.  Occupation sites and valence states of Co dopants in (La, Co)-codoped M-type Sr ferrite: Fe57 and Co59 nuclear magnetic resonance studies , 2018, Physical Review B.

[8]  Ying Tan,et al.  Surrogate-assisted hierarchical particle swarm optimization , 2018, Inf. Sci..

[9]  C. Michioka,et al.  Magnetocrystalline anisotropy of La- and Co-substituted M -type strontium ferrites: Role of Co2+ and Fe2+ , 2017 .

[10]  Ichiro Takeuchi,et al.  Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies , 2017 .

[11]  M. D. de Campos,et al.  High Technology Applications of Barium and Strontium Ferrite Magnets , 2016 .

[12]  H. Nakamura,et al.  Flux growth of magnetoplumbite-type strontium ferrite single crystals with La–Co co-substitution , 2016 .

[13]  A. Choudhary,et al.  Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science , 2016 .

[14]  O. D. L. Barriere,et al.  Structural and magnetic properties of an anisotropic M-type LaCo-substituted strontium hexaferrite , 2015 .

[15]  Cuie Wen,et al.  The impact of Co/La ratios on microstructure and magnetic properties of the Sr0.75−xCa0.25LaxFe12−yCoyO19 hexaferrites , 2015 .

[16]  Xiansong Liu,et al.  Microstructure and magnetic properties of Ca-substituted M-type SrLaCo hexagonal ferrites , 2015 .

[17]  Xiansong Liu,et al.  Structural and magnetic properties of La–Co substituted Sr–Ca hexaferrites synthesized by the solid state reaction method , 2014 .

[18]  Xiansong Liu,et al.  The impact of the iron content on the microstructure and magnetic properties of M-type ferrites Sr0.45Ca0.25La0.30FexCo0.25O19 , 2014 .

[19]  V. Harris,et al.  Enhanced Coercivity of CaLaCo‐Doped SrM Hexaferrites by Microwave‐Calcination Technique , 2014 .

[20]  Shuoqing Yan,et al.  Microstructure and magnetic properties of M-type Sr0.61−xLa0.39CaxFe11.7Co0.3O19 hexaferrite prepared by microwave calcination , 2014 .

[21]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[22]  R. Pullar Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics , 2012 .

[23]  H. Sözeri,et al.  Modeling of Magnetic Properties of Nanocrystalline La-doped Barium Hexaferrite , 2011 .

[24]  I. Kucuk,et al.  Phase Identification of La-Doped Hard Magnetic Barium Ferrite Using Artificial Neural Network , 2011 .

[25]  Virginie Nachbaur,et al.  Synthesis and characterization of SrFe12O19 powder obtained by hydrothermal process , 2010 .

[26]  D. Choi,et al.  Mössbauer studies for La–Co substituted strontium ferrite , 2006 .

[27]  S. Ounnunkad Improving magnetic properties of barium hexaferrites by La or Pr substitution , 2006 .

[28]  Yen‐Pei Fu,et al.  Fe/Sr ratio effect on magnetic properties of strontium ferrite powders synthesized by microwave-induced combustion process , 2005 .

[29]  Matthias W. Seeger,et al.  Gaussian Processes For Machine Learning , 2004, Int. J. Neural Syst..

[30]  R. Grössinger,et al.  Magnetic properties of a new family of rare-earth substituted ferrites , 2003 .

[31]  R. Grossinger,et al.  LaCo-substituted ferrite magnets, a new class of high-grade ceramic magnets; intrinsic and microstructural aspects , 2002 .

[32]  J. Kreisel,et al.  Sublattice occupation in Sr1−xLaxFe12−xCoxO19 hexagonal ferrite analyzed by Mössbauer spectrometry and Raman spectroscopy , 2002 .

[33]  T. Takami,et al.  Improvements of magnetic properties of Sr ferrite magnets by substitutions of La and Co , 1999 .

[34]  K. Iida,et al.  High - Performance Ferrite Magnets: M - Type Sr - Ferrite Containing Lanthanum and Cobalt , 1999 .

[35]  A. Vijayalakshmi,et al.  Magnetic properties of single-domain SrFe12O19 particles synthesized by citrate precursor technique , 1998 .

[36]  J. Rodgers,et al.  Thirteen ways to look at the correlation coefficient , 1988 .

[37]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[38]  E. Gorter Saturation magnetization of some ferrimagnetic oxides with hexagonal crystal structures , 1957 .