Constructing asymmetric space-time codes with the Smart Puncturing Method

A method for constructing asymmetric space-time block codes (ASTBC) is proposed. This smart puncturing method (SPM) generalizes the so-called subfield construction method (SCM) introduced in earlier work and applies to any antenna combination with #Rx<#Tx as opposed to SCM, where the requirement is #Tx= m#Rx for some integer m. It has been shown that e.g. for 4Tx+2Rx antennas, the SCM performs equally or even better than the trivial puncturing method (TPM), but admits at the same time lower peak-to-mean power ratio. This is due to the fact that there are no zero slots in the code matrix but the information symbols are evenly spread into the matrix slots. The generalized method proposed in this paper is also based on cyclic division algebras (CDAs) and allows us to do the same for any number of receiving antennas #Rx<#Tx.

[1]  Camilla Hollanti,et al.  Asymmetric Space-Time Block Codes for MIMO Systems , 2007, 2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks.

[2]  A. Robert Calderbank,et al.  The Icosian Code and the E8 Lattice: A New 4 × 4 Space-Time Code with Non-vanishing Determinant , 2006, 2006 IEEE International Symposium on Information Theory.

[3]  Pranav Dayal,et al.  Maximal diversity algebraic space-time codes with low peak-to-mean power ratio , 2005, IEEE Transactions on Information Theory.

[4]  Hesham El Gamal,et al.  A new approach to layered space-Time coding and signal processing , 2001, IEEE Trans. Inf. Theory.

[5]  Camilla Hollanti,et al.  A New Tool: Constructing STBCs from Maximal Orders in Central Simple Algebras , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[6]  F. Oggier,et al.  Perfect Space Time Block Codes , 2006 .

[7]  E. Viterbo,et al.  A COMPARISON OF HIGH RATE ALGEBRAIC AND NON-ORTHOGONAL STBCS , 2007 .

[8]  Jean-Claude Belfiore,et al.  Perfect Space-Time Block Codes for parallel MIMO channels , 2006, 2006 IEEE International Symposium on Information Theory.

[9]  B. Sundar Rajan,et al.  Information-Lossless Space–Time Block Codes From Crossed-Product Algebras , 2006, IEEE Transactions on Information Theory.

[10]  B. Sundar Rajan,et al.  Full-diversity, high-rate space-time block codes from division algebras , 2003, IEEE Trans. Inf. Theory.

[11]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[12]  Hsiao-feng Lu Explicit Constructions of Multi-Block Space-Time Codes That Achieve The Diversity-Multiplexing Tradeoff , 2006, 2006 IEEE International Symposium on Information Theory.

[13]  Camilla Hollanti,et al.  On the Densest MIMO Lattices From Cyclic Division Algebras , 2007, IEEE Transactions on Information Theory.

[14]  B. Sundar Rajan,et al.  STBC-schemes with nonvanishing determinant for certain number of transmit antennas , 2005, IEEE Transactions on Information Theory.

[15]  Emanuele Viterbo,et al.  The golden code: a 2 x 2 full-rate space-time code with non-vanishing determinants , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[16]  Emanuele Viterbo,et al.  The golden code: a 2×2 full-rate space-time code with nonvanishing determinants , 2004, IEEE Trans. Inf. Theory.

[17]  B. Sundar Rajan,et al.  STBC-schemes with non-vanishing determinant for certain number of transmit antennas , 2005, ISIT.

[18]  Lizhong Zheng,et al.  Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels , 2003, IEEE Trans. Inf. Theory.

[19]  Xiang-Gen Xia,et al.  Correction to the Definition of Diversity Product in "On Optimal Multilayer Cyclotomic Space-Time Code Designs" , 2005, IEEE Trans. Inf. Theory.

[20]  N. Jacobson,et al.  Basic Algebra II , 1989 .

[21]  P. Vijay Kumar,et al.  Space-Time Codes Meeting The Diversity-Multiplexing Gain Tradeo With Low Signalling Complexity , 2005 .

[22]  B. Sundar Rajan,et al.  Information-lossless STBCs from crossed-product algebras , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[23]  A. Albert Structure of Algebras , 1939 .

[24]  Camilla Hollanti,et al.  Maximal Orders in the Design of Dense Space-Time Lattice Codes , 2008, IEEE Transactions on Information Theory.

[25]  N. Jacobson,et al.  Basic Algebra I , 1976 .

[26]  A. Robert Calderbank,et al.  The Icosian Code and the $E_8$ Lattice: A New $4\,\times\,4$ Space–Time Code With Nonvanishing Determinant , 2008, IEEE Transactions on Information Theory.

[27]  Camilla Hollanti,et al.  Optimal Matrix Lattices for MIMO Codes from Division Algebras , 2006, 2006 IEEE International Symposium on Information Theory.

[28]  Frédérique E. Oggier,et al.  Perfect Space–Time Block Codes , 2006, IEEE Transactions on Information Theory.

[29]  P. Vijay Kumar,et al.  Explicit Space–Time Codes Achieving the Diversity–Multiplexing Gain Tradeoff , 2006, IEEE Transactions on Information Theory.

[30]  P. Vijay Kumar,et al.  Perfect Space–Time Codes for Any Number of Antennas , 2007, IEEE Transactions on Information Theory.