Quantum-enhanced multi-parameter estimation for unitary photonic systems

Precise device characterisation is a fundamental requirement for a large range of applications using photonic hardware, and constitutes a multi-parameter estimation problem. Estimates based on measurements using single photons or classical light have precision which is limited by shot noise, while quantum resources can be used to achieve sub-shot-noise precision. However, there are many open questions with regard to the best quantum protocols for multi-parameter estimation, including the ultimate limits to achievable precision, as well as optimal choices for probe states and measurements. In this paper, we develop a formalism based on Fisher information to tackle these questions for setups based on linear-optical components and photon-counting measurements. A key ingredient of our analysis is a mapping for equivalent protocols defined for photonic and spin systems, which allows us to draw upon results in the literature for general finite-dimensional systems. Motivated by the protocol in Zhou, et al Optica 2, 510 (2015), we present new results for quantum-enhanced tomography of unitary processes, including a comparison of Holland-Burnett and NOON probe states.

[1]  Keiji matsumoto A new approach to the Cramér-Rao-type bound of the pure-state model , 2002 .

[2]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[3]  Holger F. Hofmann,et al.  High-photon-number path entanglement in the interference of spontaneously down-converted photon pairs with coherent laser light , 2007, 0705.0047.

[4]  Hugo Cable,et al.  Efficient generation of large number-path entanglement using only linear optics and feed-forward. , 2007, Physical review letters.

[5]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[6]  Marco Barbieri,et al.  Tradeoff in simultaneous quantum-limited phase and loss estimation in interferometry , 2012, 1206.0043.

[7]  Animesh Datta,et al.  Quantum Enhanced Estimation of a Multidimensional Field. , 2015, Physical review letters.

[8]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[9]  Sammy Ragy,et al.  Compatibility in multiparameter quantum metrology , 2016, 1608.02634.

[10]  Manuel A. Ballester Estimation of unitary quantum operations , 2004 .

[11]  Aephraim M. Steinberg,et al.  Adaptive quantum state tomography improves accuracy quadratically. , 2013, Physical review letters.

[12]  P. Humphreys,et al.  Quantum enhanced multiple phase estimation. , 2013, Physical review letters.

[13]  Yurke Input states for enhancement of fermion interferometer sensitivity. , 1986, Physical review letters.

[14]  J. O'Brien Optical Quantum Computing , 2007, Science.

[15]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[16]  Masahito Hayashi Parallel Treatment of Estimation of SU(2) and Phase Estimation , 2006 .

[17]  Akio Fujiwara,et al.  Estimation of SU(2) operation and dense coding: An information geometric approach , 2001 .

[18]  L. C. Biedenharn,et al.  Quantum Theory of Angular Momentum: A Collection of Reprints and Original Papers , 1965 .

[19]  Michael A. Taylor Quantum Microscopy of Biological Systems , 2015 .

[20]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[21]  E. Bagan,et al.  Entanglement-assisted alignment of reference frames using a dense covariant coding , 2004 .

[22]  Tillmann Baumgratz,et al.  Multi-parameter quantum metrology , 2016, 1604.02615.

[23]  Wei Zhang,et al.  An optical lattice clock with accuracy and stability at the 10−18 level , 2013, Nature.

[24]  M. Scully,et al.  The Quantum Theory of Light , 1974 .

[25]  E. Bagan,et al.  Quantum reverse engineering and reference-frame alignment without nonlocal correlations , 2004 .

[26]  Viatcheslav V. Dobrovitski,et al.  Supporting Information for “ Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond ” , 2013 .

[27]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[28]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[29]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[30]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[31]  Takanori Sugiyama,et al.  Adaptive experimental design for one-qubit state estimation with finite data based on a statistical update criterion , 2012, 1203.3391.

[32]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[33]  Animesh Datta,et al.  Quantum metrology with imperfect states and detectors , 2010, 1012.0539.

[34]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[35]  Augusto Smerzi,et al.  Quantum-enhanced multiparameter estimation in multiarm interferometers , 2015, Scientific Reports.

[36]  Silvelyn Zwanzig,et al.  Introduction to the Theory of Statistical Inference , 2011 .

[37]  Marco G. Genoni,et al.  Joint estimation of phase and phase diffusion for quantum metrology , 2014, Nature Communications.

[38]  H. Primakoff,et al.  Field dependence of the intrinsic domain magnetization of a ferromagnet , 1940 .

[39]  Hugo Cable,et al.  Quantum-enhanced tomography of unitary processes , 2014, 1402.2897.

[40]  Jonathan P Dowling,et al.  Local and global distinguishability in quantum interferometry. , 2007, Physical review letters.

[41]  Holger F. Hofmann,et al.  All path-symmetric pure states achieve their maximal phase sensitivity in conventional two-path interferometry , 2008, 0812.0044.

[42]  G Chiribella,et al.  Efficient use of quantum resources for the transmission of a reference frame. , 2004, Physical review letters.

[43]  Heng Fan,et al.  Quantum-enhanced metrology for multiple phase estimation with noise , 2013, Scientific Reports.

[44]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[45]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[46]  Carl W. Helstrom,et al.  The minimum variance of estimates in quantum signal detection , 1968, IEEE Trans. Inf. Theory.

[47]  C. W. Helstrom,et al.  Minimum mean-squared error of estimates in quantum statistics , 1967 .

[48]  H. Cramér Mathematical methods of statistics , 1947 .