On a Max-Type Difference Equation

We prove that every positive solution of the max-type difference equation , converges to where are positive integers, , and .

[1]  Hamdy A. El-Metwally,et al.  On the periodic nature of some max-type difference equations , 2005, Int. J. Math. Math. Sci..

[2]  H. Sedaghat Open Problems and Conjectures , 2008 .

[3]  Lothar Berg,et al.  Periodicity of some classes of holomorphic difference equations , 2006 .

[4]  J. Feuer,et al.  On the eventual periodicity of xn+1 = max(1/xn, An/xn-1) with a period-five parameter , 2008, Comput. Math. Appl..

[5]  Stevo Stević,et al.  On the Recursive Sequence xn=1 , 2007 .

[6]  Stevo Stevi´c,et al.  ON THE RECURSIVE SEQUENCE $x_{n+1}=x_{n-1}/g(x_n)$ , 2002 .

[7]  Stevo Stevic,et al.  Global stability of a difference equation with maximum , 2009, Appl. Math. Comput..

[8]  E. Camouzis,et al.  Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures , 2001 .

[9]  G. Ladas,et al.  ON THE RECURSIVE SEQUENCE XN+1 = A/XN+ 1/XN-2 , 1998 .

[10]  Ali Gelisken,et al.  On the Periodicity of a Difference Equation with Maximum , 2008 .

[11]  Stevo Stevic,et al.  On the recursive sequence xn+1 = max{c, xpn/xpn-1} , 2008, Appl. Math. Lett..

[12]  G. Ladas,et al.  A Global Convergence Result with Applications to Periodic Solutions , 2000 .

[13]  H.D. Voulov On the Periodic Character of Some Difference Equations , 2002 .

[14]  Stevo Stević,et al.  Global stability and asymptotics of some classes of rational difference equations , 2006 .

[15]  S. Stevo Boundedness character of two classes of third-order difference equations(1 , 2009 .

[16]  Stevo Stević ON THE RECURSIVE SEQUENCE $x_{n+1} = \dfrac{\alpha + \beta x_{n-k}}{f(x_n,...,x_{n-k+1})}$ , 2005 .

[17]  István Szalkai On the periodicity of the sequence , 1999 .

[18]  R. Kurshan,et al.  Recursively Generated Periodic Sequences , 1974, Canadian Journal of Mathematics.

[19]  S. Stević Periodic Character of a Class of Difference Equation , 2004 .

[20]  Ali Gelisken,et al.  A Note on the Periodicity of the Lyness Max Equation , 2007 .

[21]  Alaa E. Hamza,et al.  On the recursive sequence xn+1= , 2008, Comput. Math. Appl..

[22]  J. Feuer On the eventual periodicity of with a period-four parameter , 2006 .

[23]  Stevo Stević,et al.  Asymptotics of Some Classes of Higher-Order Difference Equations , 2007 .

[24]  K. Kwon,et al.  Discrete classical orthogonal polynomials , 1998 .

[25]  Stevo Stevic,et al.  Existence of nontrivial solutions of a rational difference equation , 2007, Appl. Math. Lett..

[26]  Stevo Stevic,et al.  Eventually constant solutions of a rational difference equation , 2009, Appl. Math. Comput..

[27]  Alaa E. Hamza,et al.  On the recursive sequence xn+1=α+xn−1xn , 2006 .

[28]  C. J. Schinas,et al.  On the Recursive Sequence xn 1 A , 2009 .

[29]  William T. Patula,et al.  On a Max Type Recurrence Relation with Periodic Coefficients , 2004 .

[30]  Normal forms for rational difference equations with applications to the global periodicity problem , 2007 .

[31]  Stevo Stević,et al.  On the Recursive Sequence xn+1=A+xnp/xn−1p , 2007 .

[32]  Kenneth S. Berenhaut,et al.  Boundedness character of positive solutions of a max difference equation , 2006 .

[33]  Stevo Stević,et al.  On the Behaviour of the Solutions of a Second-Order Difference Equation , 2007 .

[34]  Stevo Stevic,et al.  On a class of third-order nonlinear difference equations , 2009, Appl. Math. Comput..

[35]  Fangkuan Sun,et al.  On the Asymptotic Behavior of a Difference Equation with Maximum , 2008 .

[36]  Stevo Stević,et al.  Boundedness character of a class of difference equations , 2009 .

[37]  Stevo Stević On the recursive sequence , 2004 .

[38]  Ali Gelisken,et al.  On the Global Attractivity of a Max-Type Difference Equation , 2009 .

[39]  Chuandong Li,et al.  On a difference equation with maximum , 2006, Appl. Math. Comput..

[40]  R. Devault,et al.  On the recursive sequence , 2000 .

[41]  G. Ladas,et al.  A difference equation with eventually periodic solutions , 1998 .

[42]  S. Stevo,et al.  The recursive sequence xn+1 = g(xn, xn-1)/(A + xn) , 2002, Appl. Math. Lett..

[43]  Sin-Ei Takahasi,et al.  ON CONVERGENCE OF A RECURSIVE SEQUENCE $x_{n+1} = f(x_{n-1}, x_n)$ , 2006 .

[44]  Kenneth S. Berenhaut,et al.  The behaviour of the positive solutions of the difference equation , 2006 .

[45]  Stevo Stević On Global Periodicity of a Class of Difference Equations , 2007 .

[46]  Stevo Stevi´c,et al.  ON THE RECURSIVE SEQUENCE $x_{n+1}=\displaystyle\frac{A}{\prod^k_{i=0}x_{n-i}}+\displaystyle\frac{1}{\prod^{2(k+1)}_{j=k+2}x_{n-j}}$ , 2003 .

[47]  Stevo Stević,et al.  On the recursive sequence $$x_{n + 1} = \alpha + \frac{{x_{n - 1}^p }}{{x_n^p }}$$ , 2005 .

[48]  G. Ladas,et al.  On the Recursive Sequencexn + 1 = α + xn − 1/xn☆ , 1999 .

[49]  Stevo Stević,et al.  On a generalized max-type difference equation from automatic control theory , 2010 .

[50]  H. D Voulov On the periodic nature of the solutions of the reciprocal difference equation with maximum , 2004 .

[51]  S. Stević On a class of higher-order difference equations , 2009 .

[52]  S. Stević Boundedness character of a fourth order nonlinear difference equation , 2009 .

[53]  H. Voulov,et al.  Periodic solutions to a difference equation with maximum , 2002 .

[54]  Cengiz Çinar,et al.  On positive solutions of a reciprocal difference equation with minimum , 2005 .

[55]  W. T. Patula,et al.  A reciprocal difference equation with maximum , 2002 .