An enriched space-time finite element method for fluid-structure interaction - Part I: Prescribed structural displacement

This contribution introduces a new approach to treat fluid-structure interaction problems. This presentation (part one) focuses on applications with prescribed and a priori known displacement of thin structures. The extension of the presented numerical method to flexible structures enables the approach to handle fully coupled fluid-structure interaction situations (part two).

[1]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[2]  T. Belytschko,et al.  An enriched finite element method and level sets for axisymmetric two‐phase flow with surface tension , 2003 .

[3]  F. Baaijens A fictitious domain/mortar element method for fluid-structure interaction , 2001 .

[4]  Philippe A. Tanguy,et al.  A three-dimensional fictitious domain method for incompressible fluid flow problems , 1997 .

[5]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[6]  T. Belytschko,et al.  On the construction of blending elements for local partition of unity enriched finite elements , 2003 .

[7]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[8]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[9]  J. Melenk The Partition of Unity MethodI , 1996 .

[10]  A. Legay,et al.  An enriched space-time finite element method for fluid-structure interaction - Part II: Thin flexible structures , 2006 .

[11]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[12]  D. Dinkler,et al.  Fluid-structure coupling within a monolithic model involving free surface flows , 2005 .

[13]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[14]  T. Belytschko,et al.  An Eulerian–Lagrangian method for fluid–structure interaction based on level sets , 2006 .

[15]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[16]  T. Belytschko,et al.  Strong and weak arbitrary discontinuities in spectral finite elements , 2005 .

[17]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[18]  D. Dinkler,et al.  A monolithic approach to fluid–structure interaction using space–time finite elements , 2004 .

[19]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[20]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .